WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg2==arg2P_1 && arg3==arg3P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg1==arg1P_2 && 2==arg2P_2 && arg3==arg3P_2 ], cost: 1 2: f3 -> f4 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ arg1==arg1P_3 && arg2==arg2P_3 && 1==arg3P_3 ], cost: 1 8: f4 -> f5 : arg1'=arg1P_9, arg2'=arg2P_9, arg3'=arg3P_9, [ arg1<0 && arg1==arg1P_9 && arg2==arg2P_9 && arg3==arg3P_9 ], cost: 1 9: f4 -> f5 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [ arg2<1 && arg1==arg1P_10 && arg2==arg2P_10 && arg3==arg3P_10 ], cost: 1 10: f4 -> f6 : arg1'=arg1P_11, arg2'=arg2P_11, arg3'=arg3P_11, [ arg1>=0 && arg2>=1 && arg1==arg1P_11 && arg2==arg2P_11 && arg3==arg3P_11 ], cost: 1 3: f8 -> f9 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg2P_4==arg2^2 && arg1==arg1P_4 && arg3==arg3P_4 ], cost: 1 4: f9 -> f10 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ arg3P_5==2*arg3 && arg1==arg1P_5 && arg2==arg2P_5 ], cost: 1 6: f10 -> f6 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, [ arg1==arg1P_7 && arg2==arg2P_7 && arg3==arg3P_7 ], cost: 1 5: f6 -> f8 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [ arg1>arg2 && arg1==arg1P_6 && arg2==arg2P_6 && arg3==arg3P_6 ], cost: 1 7: f6 -> f11 : arg1'=arg1P_8, arg2'=arg2P_8, arg3'=arg3P_8, [ arg1<=arg2 && arg1==arg1P_8 && arg2==arg2P_8 && arg3==arg3P_8 ], cost: 1 12: f11 -> f7 : arg1'=arg1P_13, arg2'=arg2P_13, arg3'=arg3P_13, [ arg1==arg1P_13 && arg2==arg2P_13 && arg3==arg3P_13 ], cost: 1 11: f5 -> f7 : arg1'=arg1P_12, arg2'=arg2P_12, arg3'=arg3P_12, [ arg1==arg1P_12 && arg2==arg2P_12 && arg3==arg3P_12 ], cost: 1 13: __init -> f1 : arg1'=arg1P_14, arg2'=arg2P_14, arg3'=arg3P_14, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 13: __init -> f1 : arg1'=arg1P_14, arg2'=arg2P_14, arg3'=arg3P_14, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg2==arg2P_1 && arg3==arg3P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg1==arg1P_2 && 2==arg2P_2 && arg3==arg3P_2 ], cost: 1 2: f3 -> f4 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ arg1==arg1P_3 && arg2==arg2P_3 && 1==arg3P_3 ], cost: 1 10: f4 -> f6 : arg1'=arg1P_11, arg2'=arg2P_11, arg3'=arg3P_11, [ arg1>=0 && arg2>=1 && arg1==arg1P_11 && arg2==arg2P_11 && arg3==arg3P_11 ], cost: 1 3: f8 -> f9 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg2P_4==arg2^2 && arg1==arg1P_4 && arg3==arg3P_4 ], cost: 1 4: f9 -> f10 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ arg3P_5==2*arg3 && arg1==arg1P_5 && arg2==arg2P_5 ], cost: 1 6: f10 -> f6 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, [ arg1==arg1P_7 && arg2==arg2P_7 && arg3==arg3P_7 ], cost: 1 5: f6 -> f8 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [ arg1>arg2 && arg1==arg1P_6 && arg2==arg2P_6 && arg3==arg3P_6 ], cost: 1 13: __init -> f1 : arg1'=arg1P_14, arg2'=arg2P_14, arg3'=arg3P_14, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, [], cost: 1 1: f2 -> f3 : arg2'=2, [], cost: 1 2: f3 -> f4 : arg3'=1, [], cost: 1 10: f4 -> f6 : [ arg1>=0 && arg2>=1 ], cost: 1 3: f8 -> f9 : arg2'=arg2^2, [], cost: 1 4: f9 -> f10 : arg3'=2*arg3, [], cost: 1 6: f10 -> f6 : [], cost: 1 5: f6 -> f8 : [ arg1>arg2 ], cost: 1 13: __init -> f1 : arg1'=arg1P_14, arg2'=arg2P_14, arg3'=arg3P_14, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 20: f6 -> f6 : arg2'=arg2^2, arg3'=2*arg3, [ arg1>arg2 ], cost: 4 17: __init -> f6 : arg1'=arg1P_1, arg2'=2, arg3'=1, [ arg1P_1>=0 ], cost: 5 Accelerating simple loops of location 7. Accelerating the following rules: 20: f6 -> f6 : arg2'=arg2^2, arg3'=2*arg3, [ arg1>arg2 ], cost: 4 Accelerated rule 20 with non-termination, yielding the new rule 21. Accelerated rule 20 with backward acceleration, yielding the new rule 22. [accelerate] Nesting with 1 inner and 0 outer candidates Removing the simple loops: 20. Accelerated all simple loops using metering functions (where possible): Start location: __init 21: f6 -> [12] : [ arg1>arg2 && arg2==0 && arg1==1 ], cost: NONTERM 22: f6 -> f6 : arg2'=arg2^(2^k), arg3'=2^k*arg3, [ k>=0 && arg1>arg2^(2^(-1+k)) ], cost: 4*k 17: __init -> f6 : arg1'=arg1P_1, arg2'=2, arg3'=1, [ arg1P_1>=0 ], cost: 5 Chained accelerated rules (with incoming rules): Start location: __init 17: __init -> f6 : arg1'=arg1P_1, arg2'=2, arg3'=1, [ arg1P_1>=0 ], cost: 5 23: __init -> f6 : arg1'=arg1P_1, arg2'=2^(2^k), arg3'=2^k, [ arg1P_1>=0 && k>=0 && arg1P_1>2^(2^(-1+k)) ], cost: 5+4*k Removed unreachable locations (and leaf rules with constant cost): Start location: __init 23: __init -> f6 : arg1'=arg1P_1, arg2'=2^(2^k), arg3'=2^k, [ arg1P_1>=0 && k>=0 && arg1P_1>2^(2^(-1+k)) ], cost: 5+4*k ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 23: __init -> f6 : arg1'=arg1P_1, arg2'=2^(2^k), arg3'=2^k, [ arg1P_1>=0 && k>=0 && arg1P_1>2^(2^(-1+k)) ], cost: 5+4*k Computing asymptotic complexity for rule 23 Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [] WORST_CASE(Omega(1),?)