NO ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2==arg2P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1==arg1P_2 ], cost: 1 3: f3 -> f4 : arg1'=arg1P_4, arg2'=arg2P_4, [ arg1>=0 && arg1==arg1P_4 && arg2==arg2P_4 ], cost: 1 4: f3 -> f5 : arg1'=arg1P_5, arg2'=arg2P_5, [ arg1<0 && arg1==arg1P_5 && arg2==arg2P_5 ], cost: 1 2: f5 -> f7 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg2P_3==-1 && arg1==arg1P_3 ], cost: 1 6: f7 -> f6 : arg1'=arg1P_7, arg2'=arg2P_7, [ arg1==arg1P_7 && arg2==arg2P_7 ], cost: 1 5: f4 -> f6 : arg1'=arg1P_6, arg2'=arg2P_6, [ arg1==arg1P_6 && arg2==arg2P_6 ], cost: 1 8: f6 -> f8 : arg1'=arg1P_9, arg2'=arg2P_9, [ arg2>=0 && arg1==arg1P_9 && arg2==arg2P_9 ], cost: 1 10: f6 -> f10 : arg1'=arg1P_11, arg2'=arg2P_11, [ arg2<0 && arg1==arg1P_11 && arg2==arg2P_11 ], cost: 1 7: f8 -> f9 : arg1'=arg1P_8, arg2'=arg2P_8, [ arg1==arg1P_8 ], cost: 1 9: f9 -> f6 : arg1'=arg1P_10, arg2'=arg2P_10, [ arg1==arg1P_10 && arg2==arg2P_10 ], cost: 1 11: f10 -> f11 : arg1'=arg1P_12, arg2'=arg2P_12, [ arg1==arg1P_12 && 2==arg2P_12 ], cost: 1 12: __init -> f1 : arg1'=arg1P_13, arg2'=arg2P_13, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 12: __init -> f1 : arg1'=arg1P_13, arg2'=arg2P_13, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2==arg2P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1==arg1P_2 ], cost: 1 3: f3 -> f4 : arg1'=arg1P_4, arg2'=arg2P_4, [ arg1>=0 && arg1==arg1P_4 && arg2==arg2P_4 ], cost: 1 4: f3 -> f5 : arg1'=arg1P_5, arg2'=arg2P_5, [ arg1<0 && arg1==arg1P_5 && arg2==arg2P_5 ], cost: 1 2: f5 -> f7 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg2P_3==-1 && arg1==arg1P_3 ], cost: 1 6: f7 -> f6 : arg1'=arg1P_7, arg2'=arg2P_7, [ arg1==arg1P_7 && arg2==arg2P_7 ], cost: 1 5: f4 -> f6 : arg1'=arg1P_6, arg2'=arg2P_6, [ arg1==arg1P_6 && arg2==arg2P_6 ], cost: 1 8: f6 -> f8 : arg1'=arg1P_9, arg2'=arg2P_9, [ arg2>=0 && arg1==arg1P_9 && arg2==arg2P_9 ], cost: 1 7: f8 -> f9 : arg1'=arg1P_8, arg2'=arg2P_8, [ arg1==arg1P_8 ], cost: 1 9: f9 -> f6 : arg1'=arg1P_10, arg2'=arg2P_10, [ arg1==arg1P_10 && arg2==arg2P_10 ], cost: 1 12: __init -> f1 : arg1'=arg1P_13, arg2'=arg2P_13, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, [], cost: 1 1: f2 -> f3 : arg2'=arg2P_2, [], cost: 1 3: f3 -> f4 : [ arg1>=0 ], cost: 1 4: f3 -> f5 : [ arg1<0 ], cost: 1 2: f5 -> f7 : arg2'=-1, [], cost: 1 6: f7 -> f6 : [], cost: 1 5: f4 -> f6 : [], cost: 1 8: f6 -> f8 : [ arg2>=0 ], cost: 1 7: f8 -> f9 : arg2'=arg2P_8, [], cost: 1 9: f9 -> f6 : [], cost: 1 12: __init -> f1 : arg1'=arg1P_13, arg2'=arg2P_13, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 16: f3 -> f6 : [ arg1>=0 ], cost: 2 17: f3 -> f6 : arg2'=-1, [ arg1<0 ], cost: 3 19: f6 -> f6 : arg2'=arg2P_8, [ arg2>=0 ], cost: 3 14: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 Accelerating simple loops of location 6. Accelerating the following rules: 19: f6 -> f6 : arg2'=arg2P_8, [ arg2>=0 ], cost: 3 [test] deduced pseudo-invariant arg2-arg2P_8<=0, also trying -arg2+arg2P_8<=-1 Accelerated rule 19 with non-termination, yielding the new rule 20. Accelerated rule 19 with non-termination, yielding the new rule 21. Accelerated rule 19 with backward acceleration, yielding the new rule 22. [accelerate] Nesting with 0 inner and 1 outer candidates Also removing duplicate rules: 21. Accelerated all simple loops using metering functions (where possible): Start location: __init 16: f3 -> f6 : [ arg1>=0 ], cost: 2 17: f3 -> f6 : arg2'=-1, [ arg1<0 ], cost: 3 19: f6 -> f6 : arg2'=arg2P_8, [ arg2>=0 ], cost: 3 20: f6 -> [12] : [ arg2>=0 && arg2P_8>=0 ], cost: NONTERM 22: f6 -> [12] : [ arg2>=0 && arg2-arg2P_8<=0 ], cost: NONTERM 14: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 Chained accelerated rules (with incoming rules): Start location: __init 16: f3 -> f6 : [ arg1>=0 ], cost: 2 17: f3 -> f6 : arg2'=-1, [ arg1<0 ], cost: 3 23: f3 -> f6 : arg2'=arg2P_8, [ arg1>=0 && arg2>=0 ], cost: 5 24: f3 -> [12] : [ arg1>=0 && arg2>=0 ], cost: NONTERM 25: f3 -> [12] : [ arg1>=0 && arg2>=0 ], cost: NONTERM 14: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 24: f3 -> [12] : [ arg1>=0 && arg2>=0 ], cost: NONTERM 25: f3 -> [12] : [ arg1>=0 && arg2>=0 ], cost: NONTERM 14: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 Eliminated locations (on tree-shaped paths): Start location: __init 26: __init -> [12] : [ arg1P_1>=0 && arg2P_2>=0 ], cost: NONTERM 27: __init -> [12] : [ arg1P_1>=0 && arg2P_2>=0 ], cost: NONTERM ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 27: __init -> [12] : [ arg1P_1>=0 && arg2P_2>=0 ], cost: NONTERM Computing asymptotic complexity for rule 27 Guard is satisfiable, yielding nontermination Resulting cost NONTERM has complexity: Nonterm Found new complexity Nonterm. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Nonterm Cpx degree: Nonterm Solved cost: NONTERM Rule cost: NONTERM Rule guard: [ arg1P_1>=0 && arg2P_2>=0 ] NO