WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg2==arg2P_1 && arg3==arg3P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg1==arg1P_2 && arg3==arg3P_2 ], cost: 1 2: f3 -> f4 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ arg1==arg1P_3 && arg2==arg2P_3 ], cost: 1 13: f4 -> f5 : arg1'=arg1P_14, arg2'=arg2P_14, arg3'=arg3P_14, [ arg1>=arg2 && arg1==arg1P_14 && arg2==arg2P_14 && arg3==arg3P_14 ], cost: 1 15: f4 -> f14 : arg1'=arg1P_16, arg2'=arg2P_16, arg3'=arg3P_16, [ arg1 f9 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg1P_4==1+arg1 && arg2==arg2P_4 && arg3==arg3P_4 ], cost: 1 4: f9 -> f10 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ arg2P_5==arg2+arg1 && arg1==arg1P_5 && arg3==arg3P_5 ], cost: 1 11: f10 -> f8 : arg1'=arg1P_12, arg2'=arg2P_12, arg3'=arg3P_12, [ arg1==arg1P_12 && arg2==arg2P_12 && arg3==arg3P_12 ], cost: 1 5: f7 -> f11 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [ arg1P_6==-arg3+arg1 && arg2==arg2P_6 && arg3==arg3P_6 ], cost: 1 6: f11 -> f12 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, [ arg2P_7==arg3^2+arg2 && arg1==arg1P_7 && arg3==arg3P_7 ], cost: 1 7: f12 -> f13 : arg1'=arg1P_8, arg2'=arg2P_8, arg3'=arg3P_8, [ arg3P_8==-1+arg3 && arg1==arg1P_8 && arg2==arg2P_8 ], cost: 1 12: f13 -> f8 : arg1'=arg1P_13, arg2'=arg2P_13, arg3'=arg3P_13, [ arg1==arg1P_13 && arg2==arg2P_13 && arg3==arg3P_13 ], cost: 1 8: f5 -> f6 : arg1'=arg1P_9, arg2'=arg2P_9, arg3'=arg3P_9, [ x27_1<0 && arg1==arg1P_9 && arg2==arg2P_9 && arg3==arg3P_9 ], cost: 1 9: f5 -> f6 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [ x66_1>0 && arg1==arg1P_10 && arg2==arg2P_10 && arg3==arg3P_10 ], cost: 1 10: f5 -> f7 : arg1'=arg1P_11, arg2'=arg2P_11, arg3'=arg3P_11, [ x31_1==0 && arg1==arg1P_11 && arg2==arg2P_11 && arg3==arg3P_11 ], cost: 1 14: f8 -> f4 : arg1'=arg1P_15, arg2'=arg2P_15, arg3'=arg3P_15, [ arg1==arg1P_15 && arg2==arg2P_15 && arg3==arg3P_15 ], cost: 1 16: __init -> f1 : arg1'=arg1P_17, arg2'=arg2P_17, arg3'=arg3P_17, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 16: __init -> f1 : arg1'=arg1P_17, arg2'=arg2P_17, arg3'=arg3P_17, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg2==arg2P_1 && arg3==arg3P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg1==arg1P_2 && arg3==arg3P_2 ], cost: 1 2: f3 -> f4 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ arg1==arg1P_3 && arg2==arg2P_3 ], cost: 1 13: f4 -> f5 : arg1'=arg1P_14, arg2'=arg2P_14, arg3'=arg3P_14, [ arg1>=arg2 && arg1==arg1P_14 && arg2==arg2P_14 && arg3==arg3P_14 ], cost: 1 3: f6 -> f9 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg1P_4==1+arg1 && arg2==arg2P_4 && arg3==arg3P_4 ], cost: 1 4: f9 -> f10 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ arg2P_5==arg2+arg1 && arg1==arg1P_5 && arg3==arg3P_5 ], cost: 1 11: f10 -> f8 : arg1'=arg1P_12, arg2'=arg2P_12, arg3'=arg3P_12, [ arg1==arg1P_12 && arg2==arg2P_12 && arg3==arg3P_12 ], cost: 1 5: f7 -> f11 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [ arg1P_6==-arg3+arg1 && arg2==arg2P_6 && arg3==arg3P_6 ], cost: 1 6: f11 -> f12 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, [ arg2P_7==arg3^2+arg2 && arg1==arg1P_7 && arg3==arg3P_7 ], cost: 1 7: f12 -> f13 : arg1'=arg1P_8, arg2'=arg2P_8, arg3'=arg3P_8, [ arg3P_8==-1+arg3 && arg1==arg1P_8 && arg2==arg2P_8 ], cost: 1 12: f13 -> f8 : arg1'=arg1P_13, arg2'=arg2P_13, arg3'=arg3P_13, [ arg1==arg1P_13 && arg2==arg2P_13 && arg3==arg3P_13 ], cost: 1 8: f5 -> f6 : arg1'=arg1P_9, arg2'=arg2P_9, arg3'=arg3P_9, [ x27_1<0 && arg1==arg1P_9 && arg2==arg2P_9 && arg3==arg3P_9 ], cost: 1 9: f5 -> f6 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [ x66_1>0 && arg1==arg1P_10 && arg2==arg2P_10 && arg3==arg3P_10 ], cost: 1 10: f5 -> f7 : arg1'=arg1P_11, arg2'=arg2P_11, arg3'=arg3P_11, [ x31_1==0 && arg1==arg1P_11 && arg2==arg2P_11 && arg3==arg3P_11 ], cost: 1 14: f8 -> f4 : arg1'=arg1P_15, arg2'=arg2P_15, arg3'=arg3P_15, [ arg1==arg1P_15 && arg2==arg2P_15 && arg3==arg3P_15 ], cost: 1 16: __init -> f1 : arg1'=arg1P_17, arg2'=arg2P_17, arg3'=arg3P_17, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, [], cost: 1 1: f2 -> f3 : arg2'=arg2P_2, [], cost: 1 2: f3 -> f4 : arg3'=arg3P_3, [], cost: 1 13: f4 -> f5 : [ arg1>=arg2 ], cost: 1 3: f6 -> f9 : arg1'=1+arg1, [], cost: 1 4: f9 -> f10 : arg2'=arg2+arg1, [], cost: 1 11: f10 -> f8 : [], cost: 1 5: f7 -> f11 : arg1'=-arg3+arg1, [], cost: 1 6: f11 -> f12 : arg2'=arg3^2+arg2, [], cost: 1 7: f12 -> f13 : arg3'=-1+arg3, [], cost: 1 12: f13 -> f8 : [], cost: 1 9: f5 -> f6 : [], cost: 1 10: f5 -> f7 : [], cost: 1 14: f8 -> f4 : [], cost: 1 16: __init -> f1 : arg1'=arg1P_17, arg2'=arg2P_17, arg3'=arg3P_17, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 13: f4 -> f5 : [ arg1>=arg2 ], cost: 1 24: f5 -> f8 : arg1'=1+arg1, arg2'=1+arg2+arg1, [], cost: 4 26: f5 -> f8 : arg1'=-arg3+arg1, arg2'=arg3^2+arg2, arg3'=-1+arg3, [], cost: 5 14: f8 -> f4 : [], cost: 1 19: __init -> f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 Eliminated locations (on tree-shaped paths): Start location: __init 27: f4 -> f8 : arg1'=1+arg1, arg2'=1+arg2+arg1, [ arg1>=arg2 ], cost: 5 28: f4 -> f8 : arg1'=-arg3+arg1, arg2'=arg3^2+arg2, arg3'=-1+arg3, [ arg1>=arg2 ], cost: 6 14: f8 -> f4 : [], cost: 1 19: __init -> f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 Eliminated locations (on tree-shaped paths): Start location: __init 29: f4 -> f4 : arg1'=1+arg1, arg2'=1+arg2+arg1, [ arg1>=arg2 ], cost: 6 30: f4 -> f4 : arg1'=-arg3+arg1, arg2'=arg3^2+arg2, arg3'=-1+arg3, [ arg1>=arg2 ], cost: 7 19: __init -> f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 Accelerating simple loops of location 3. Accelerating the following rules: 29: f4 -> f4 : arg1'=1+arg1, arg2'=1+arg2+arg1, [ arg1>=arg2 ], cost: 6 30: f4 -> f4 : arg1'=-arg3+arg1, arg2'=arg3^2+arg2, arg3'=-1+arg3, [ arg1>=arg2 ], cost: 7 [test] deduced pseudo-invariant -arg1<=0, also trying arg1<=-1 Accelerated rule 29 with backward acceleration, yielding the new rule 31. Accelerated rule 29 with backward acceleration, yielding the new rule 32. Accelerated rule 30 with backward acceleration, yielding the new rule 33. [accelerate] Nesting with 3 inner and 2 outer candidates Removing the simple loops: 30. Accelerated all simple loops using metering functions (where possible): Start location: __init 29: f4 -> f4 : arg1'=1+arg1, arg2'=1+arg2+arg1, [ arg1>=arg2 ], cost: 6 31: f4 -> f4 : arg1'=k+arg1, arg2'=k*arg1+arg2+1/2*k+1/2*k^2, [ -arg1<=0 && k>=0 && -1+k+arg1>=-1/2+arg2+1/2*k+arg1*(-1+k)+1/2*(-1+k)^2 ], cost: 6*k 32: f4 -> f4 : arg1'=0, arg2'=arg2-1/2*arg1^2-1/2*arg1, [ arg1>=arg2 && -arg1>=0 ], cost: -6*arg1 33: f4 -> f4 : arg1'=-arg3*k_2+1/2*k_2^2-1/2*k_2+arg1, arg2'=-arg3*k_2^2+arg2+arg3*k_2+arg3^2*k_2-1/2*k_2^2+1/3*k_2^3+1/6*k_2, arg3'=arg3-k_2, [ k_2>=0 && 1/2-arg3*(-1+k_2)-1/2*k_2+1/2*(-1+k_2)^2+arg1>=-1/6+arg2+arg3*(-1+k_2)-arg3*(-1+k_2)^2+1/6*k_2+arg3^2*(-1+k_2)-1/2*(-1+k_2)^2+1/3*(-1+k_2)^3 ], cost: 7*k_2 19: __init -> f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 Chained accelerated rules (with incoming rules): Start location: __init 19: __init -> f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 34: __init -> f4 : arg1'=1+arg1P_1, arg2'=1+arg1P_1+arg2P_2, arg3'=arg3P_3, [ arg1P_1>=arg2P_2 ], cost: 10 35: __init -> f4 : arg1'=k+arg1P_1, arg2'=k*arg1P_1+1/2*k+1/2*k^2+arg2P_2, arg3'=arg3P_3, [ -arg1P_1<=0 && k>=0 && -1+k+arg1P_1>=-1/2+1/2*k+arg2P_2+arg1P_1*(-1+k)+1/2*(-1+k)^2 ], cost: 4+6*k 36: __init -> f4 : arg1'=0, arg2'=-1/2*arg1P_1+arg2P_2-1/2*arg1P_1^2, arg3'=arg3P_3, [ arg1P_1>=arg2P_2 && -arg1P_1>=0 ], cost: 4-6*arg1P_1 37: __init -> f4 : arg1'=-k_2*arg3P_3+arg1P_1+1/2*k_2^2-1/2*k_2, arg2'=k_2*arg3P_3+k_2*arg3P_3^2-1/2*k_2^2+1/3*k_2^3+arg2P_2+1/6*k_2-k_2^2*arg3P_3, arg3'=-k_2+arg3P_3, [ k_2>=0 && 1/2+arg1P_1-(-1+k_2)*arg3P_3-1/2*k_2+1/2*(-1+k_2)^2>=-1/6-(-1+k_2)^2*arg3P_3+(-1+k_2)*arg3P_3+arg2P_2+1/6*k_2+(-1+k_2)*arg3P_3^2-1/2*(-1+k_2)^2+1/3*(-1+k_2)^3 ], cost: 4+7*k_2 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 35: __init -> f4 : arg1'=k+arg1P_1, arg2'=k*arg1P_1+1/2*k+1/2*k^2+arg2P_2, arg3'=arg3P_3, [ -arg1P_1<=0 && k>=0 && -1+k+arg1P_1>=-1/2+1/2*k+arg2P_2+arg1P_1*(-1+k)+1/2*(-1+k)^2 ], cost: 4+6*k 36: __init -> f4 : arg1'=0, arg2'=-1/2*arg1P_1+arg2P_2-1/2*arg1P_1^2, arg3'=arg3P_3, [ arg1P_1>=arg2P_2 && -arg1P_1>=0 ], cost: 4-6*arg1P_1 37: __init -> f4 : arg1'=-k_2*arg3P_3+arg1P_1+1/2*k_2^2-1/2*k_2, arg2'=k_2*arg3P_3+k_2*arg3P_3^2-1/2*k_2^2+1/3*k_2^3+arg2P_2+1/6*k_2-k_2^2*arg3P_3, arg3'=-k_2+arg3P_3, [ k_2>=0 && 1/2+arg1P_1-(-1+k_2)*arg3P_3-1/2*k_2+1/2*(-1+k_2)^2>=-1/6-(-1+k_2)^2*arg3P_3+(-1+k_2)*arg3P_3+arg2P_2+1/6*k_2+(-1+k_2)*arg3P_3^2-1/2*(-1+k_2)^2+1/3*(-1+k_2)^3 ], cost: 4+7*k_2 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 35: __init -> f4 : arg1'=k+arg1P_1, arg2'=k*arg1P_1+1/2*k+1/2*k^2+arg2P_2, arg3'=arg3P_3, [ -arg1P_1<=0 && k>=0 && -1+k+arg1P_1>=-1/2+1/2*k+arg2P_2+arg1P_1*(-1+k)+1/2*(-1+k)^2 ], cost: 4+6*k 36: __init -> f4 : arg1'=0, arg2'=-1/2*arg1P_1+arg2P_2-1/2*arg1P_1^2, arg3'=arg3P_3, [ arg1P_1>=arg2P_2 && -arg1P_1>=0 ], cost: 4-6*arg1P_1 37: __init -> f4 : arg1'=-k_2*arg3P_3+arg1P_1+1/2*k_2^2-1/2*k_2, arg2'=k_2*arg3P_3+k_2*arg3P_3^2-1/2*k_2^2+1/3*k_2^3+arg2P_2+1/6*k_2-k_2^2*arg3P_3, arg3'=-k_2+arg3P_3, [ k_2>=0 && 1/2+arg1P_1-(-1+k_2)*arg3P_3-1/2*k_2+1/2*(-1+k_2)^2>=-1/6-(-1+k_2)^2*arg3P_3+(-1+k_2)*arg3P_3+arg2P_2+1/6*k_2+(-1+k_2)*arg3P_3^2-1/2*(-1+k_2)^2+1/3*(-1+k_2)^3 ], cost: 4+7*k_2 Computing asymptotic complexity for rule 36 Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 37 Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 35 Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [] WORST_CASE(Omega(1),?)