WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg2==arg2P_1 && arg3==arg3P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg1==arg1P_2 && arg3==arg3P_2 ], cost: 1 2: f3 -> f4 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ arg1==arg1P_3 && arg2==arg2P_3 ], cost: 1 9: f4 -> f5 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [ arg1 f11 : arg1'=arg1P_12, arg2'=arg2P_12, arg3'=arg3P_12, [ arg1>=arg3 && arg1==arg1P_12 && arg2==arg2P_12 && arg3==arg3P_12 ], cost: 1 3: f5 -> f6 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg1==arg1P_4 && 0==arg2P_4 && arg3==arg3P_4 ], cost: 1 5: f6 -> f7 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [ arg2<=arg1 && arg1==arg1P_6 && arg2==arg2P_6 && arg3==arg3P_6 ], cost: 1 7: f6 -> f9 : arg1'=arg1P_8, arg2'=arg2P_8, arg3'=arg3P_8, [ arg2>arg1 && arg1==arg1P_8 && arg2==arg2P_8 && arg3==arg3P_8 ], cost: 1 4: f7 -> f8 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ arg2P_5==1+arg2 && arg1==arg1P_5 && arg3==arg3P_5 ], cost: 1 6: f8 -> f6 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, [ arg1==arg1P_7 && arg2==arg2P_7 && arg3==arg3P_7 ], cost: 1 8: f9 -> f10 : arg1'=arg1P_9, arg2'=arg2P_9, arg3'=arg3P_9, [ arg1P_9==1+arg1 && arg2==arg2P_9 && arg3==arg3P_9 ], cost: 1 10: f10 -> f4 : arg1'=arg1P_11, arg2'=arg2P_11, arg3'=arg3P_11, [ arg1==arg1P_11 && arg2==arg2P_11 && arg3==arg3P_11 ], cost: 1 12: __init -> f1 : arg1'=arg1P_13, arg2'=arg2P_13, arg3'=arg3P_13, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 12: __init -> f1 : arg1'=arg1P_13, arg2'=arg2P_13, arg3'=arg3P_13, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg2==arg2P_1 && arg3==arg3P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg1==arg1P_2 && arg3==arg3P_2 ], cost: 1 2: f3 -> f4 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ arg1==arg1P_3 && arg2==arg2P_3 ], cost: 1 9: f4 -> f5 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [ arg1 f6 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg1==arg1P_4 && 0==arg2P_4 && arg3==arg3P_4 ], cost: 1 5: f6 -> f7 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [ arg2<=arg1 && arg1==arg1P_6 && arg2==arg2P_6 && arg3==arg3P_6 ], cost: 1 7: f6 -> f9 : arg1'=arg1P_8, arg2'=arg2P_8, arg3'=arg3P_8, [ arg2>arg1 && arg1==arg1P_8 && arg2==arg2P_8 && arg3==arg3P_8 ], cost: 1 4: f7 -> f8 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ arg2P_5==1+arg2 && arg1==arg1P_5 && arg3==arg3P_5 ], cost: 1 6: f8 -> f6 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, [ arg1==arg1P_7 && arg2==arg2P_7 && arg3==arg3P_7 ], cost: 1 8: f9 -> f10 : arg1'=arg1P_9, arg2'=arg2P_9, arg3'=arg3P_9, [ arg1P_9==1+arg1 && arg2==arg2P_9 && arg3==arg3P_9 ], cost: 1 10: f10 -> f4 : arg1'=arg1P_11, arg2'=arg2P_11, arg3'=arg3P_11, [ arg1==arg1P_11 && arg2==arg2P_11 && arg3==arg3P_11 ], cost: 1 12: __init -> f1 : arg1'=arg1P_13, arg2'=arg2P_13, arg3'=arg3P_13, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, [], cost: 1 1: f2 -> f3 : arg2'=arg2P_2, [], cost: 1 2: f3 -> f4 : arg3'=arg3P_3, [], cost: 1 9: f4 -> f5 : [ arg1 f6 : arg2'=0, [], cost: 1 5: f6 -> f7 : [ arg2<=arg1 ], cost: 1 7: f6 -> f9 : [ arg2>arg1 ], cost: 1 4: f7 -> f8 : arg2'=1+arg2, [], cost: 1 6: f8 -> f6 : [], cost: 1 8: f9 -> f10 : arg1'=1+arg1, [], cost: 1 10: f10 -> f4 : [], cost: 1 12: __init -> f1 : arg1'=arg1P_13, arg2'=arg2P_13, arg3'=arg3P_13, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 16: f4 -> f6 : arg2'=0, [ arg1 f6 : arg2'=1+arg2, [ arg2<=arg1 ], cost: 3 20: f6 -> f4 : arg1'=1+arg1, [ arg2>arg1 ], cost: 3 15: __init -> f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 Accelerating simple loops of location 5. Accelerating the following rules: 19: f6 -> f6 : arg2'=1+arg2, [ arg2<=arg1 ], cost: 3 Accelerated rule 19 with backward acceleration, yielding the new rule 21. [accelerate] Nesting with 1 inner and 1 outer candidates Removing the simple loops: 19. Accelerated all simple loops using metering functions (where possible): Start location: __init 16: f4 -> f6 : arg2'=0, [ arg1 f4 : arg1'=1+arg1, [ arg2>arg1 ], cost: 3 21: f6 -> f6 : arg2'=1+arg1, [ 1-arg2+arg1>=0 ], cost: 3-3*arg2+3*arg1 15: __init -> f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 Chained accelerated rules (with incoming rules): Start location: __init 16: f4 -> f6 : arg2'=0, [ arg1 f6 : arg2'=1+arg1, [ arg1=0 ], cost: 5+3*arg1 20: f6 -> f4 : arg1'=1+arg1, [ arg2>arg1 ], cost: 3 15: __init -> f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 Eliminated locations (on tree-shaped paths): Start location: __init 23: f4 -> f4 : arg1'=1+arg1, arg2'=0, [ arg1arg1 ], cost: 5 24: f4 -> f4 : arg1'=1+arg1, arg2'=1+arg1, [ arg1=0 ], cost: 8+3*arg1 15: __init -> f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 Accelerating simple loops of location 3. Accelerating the following rules: 23: f4 -> f4 : arg1'=1+arg1, arg2'=0, [ arg1arg1 ], cost: 5 24: f4 -> f4 : arg1'=1+arg1, arg2'=1+arg1, [ arg1=0 ], cost: 8+3*arg1 Accelerated rule 23 with backward acceleration, yielding the new rule 25. Accelerated rule 23 with backward acceleration, yielding the new rule 26. Accelerated rule 24 with backward acceleration, yielding the new rule 27. [accelerate] Nesting with 3 inner and 2 outer candidates Removing the simple loops: 23 24. Accelerated all simple loops using metering functions (where possible): Start location: __init 25: f4 -> f4 : arg1'=arg3, arg2'=0, [ arg3-arg1>=1 && 0>-1+arg3 ], cost: 5*arg3-5*arg1 26: f4 -> f4 : arg1'=0, arg2'=0, [ -arg1>=1 && -1 f4 : arg1'=arg3, arg2'=arg3, [ 1+arg1>=0 && arg3-arg1>=1 ], cost: 3*(arg3-arg1)*arg1+13/2*arg3+3/2*(arg3-arg1)^2-13/2*arg1 15: __init -> f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 Chained accelerated rules (with incoming rules): Start location: __init 15: __init -> f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 28: __init -> f4 : arg1'=arg3P_3, arg2'=0, arg3'=arg3P_3, [ -arg1P_1+arg3P_3>=1 && 0>-1+arg3P_3 ], cost: 4-5*arg1P_1+5*arg3P_3 29: __init -> f4 : arg1'=0, arg2'=0, arg3'=arg3P_3, [ -arg1P_1>=1 && -1 f4 : arg1'=arg3P_3, arg2'=arg3P_3, arg3'=arg3P_3, [ 1+arg1P_1>=0 && -arg1P_1+arg3P_3>=1 ], cost: 4-13/2*arg1P_1+3/2*(arg1P_1-arg3P_3)^2-3*arg1P_1*(arg1P_1-arg3P_3)+13/2*arg3P_3 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 28: __init -> f4 : arg1'=arg3P_3, arg2'=0, arg3'=arg3P_3, [ -arg1P_1+arg3P_3>=1 && 0>-1+arg3P_3 ], cost: 4-5*arg1P_1+5*arg3P_3 29: __init -> f4 : arg1'=0, arg2'=0, arg3'=arg3P_3, [ -arg1P_1>=1 && -1 f4 : arg1'=arg3P_3, arg2'=arg3P_3, arg3'=arg3P_3, [ 1+arg1P_1>=0 && -arg1P_1+arg3P_3>=1 ], cost: 4-13/2*arg1P_1+3/2*(arg1P_1-arg3P_3)^2-3*arg1P_1*(arg1P_1-arg3P_3)+13/2*arg3P_3 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 28: __init -> f4 : arg1'=arg3P_3, arg2'=0, arg3'=arg3P_3, [ -arg1P_1+arg3P_3>=1 && 0>-1+arg3P_3 ], cost: 4-5*arg1P_1+5*arg3P_3 29: __init -> f4 : arg1'=0, arg2'=0, arg3'=arg3P_3, [ -arg1P_1>=1 && -1 f4 : arg1'=arg3P_3, arg2'=arg3P_3, arg3'=arg3P_3, [ 1+arg1P_1>=0 && -arg1P_1+arg3P_3>=1 ], cost: 4-13/2*arg1P_1+3/2*(arg1P_1-arg3P_3)^2-3*arg1P_1*(arg1P_1-arg3P_3)+13/2*arg3P_3 Computing asymptotic complexity for rule 30 Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 28 Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 29 Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [] WORST_CASE(Omega(1),?)