NO ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ 5==arg1P_1 && arg2==arg2P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1==arg1P_2 ], cost: 1 3: f3 -> f4 : arg1'=arg1P_4, arg2'=arg2P_4, [ arg2>=0 && arg1==arg1P_4 && arg2==arg2P_4 ], cost: 1 5: f3 -> f6 : arg1'=arg1P_6, arg2'=arg2P_6, [ arg2<0 && arg1==arg1P_6 && arg2==arg2P_6 ], cost: 1 2: f4 -> f5 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg2P_3==arg2+arg1 && arg1==arg1P_3 ], cost: 1 4: f5 -> f3 : arg1'=arg1P_5, arg2'=arg2P_5, [ arg1==arg1P_5 && arg2==arg2P_5 ], cost: 1 6: __init -> f1 : arg1'=arg1P_7, arg2'=arg2P_7, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 6: __init -> f1 : arg1'=arg1P_7, arg2'=arg2P_7, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ 5==arg1P_1 && arg2==arg2P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1==arg1P_2 ], cost: 1 3: f3 -> f4 : arg1'=arg1P_4, arg2'=arg2P_4, [ arg2>=0 && arg1==arg1P_4 && arg2==arg2P_4 ], cost: 1 2: f4 -> f5 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg2P_3==arg2+arg1 && arg1==arg1P_3 ], cost: 1 4: f5 -> f3 : arg1'=arg1P_5, arg2'=arg2P_5, [ arg1==arg1P_5 && arg2==arg2P_5 ], cost: 1 6: __init -> f1 : arg1'=arg1P_7, arg2'=arg2P_7, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg1'=5, [], cost: 1 1: f2 -> f3 : arg2'=arg2P_2, [], cost: 1 3: f3 -> f4 : [ arg2>=0 ], cost: 1 2: f4 -> f5 : arg2'=arg2+arg1, [], cost: 1 4: f5 -> f3 : [], cost: 1 6: __init -> f1 : arg1'=arg1P_7, arg2'=arg2P_7, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 10: f3 -> f3 : arg2'=arg2+arg1, [ arg2>=0 ], cost: 3 8: __init -> f3 : arg1'=5, arg2'=arg2P_2, [], cost: 3 Accelerating simple loops of location 2. Accelerating the following rules: 10: f3 -> f3 : arg2'=arg2+arg1, [ arg2>=0 ], cost: 3 [test] deduced invariant -arg1<=0 Accelerated rule 10 with non-termination, yielding the new rule 11. Accelerated rule 10 with non-termination, yielding the new rule 12. Accelerated rule 10 with backward acceleration, yielding the new rule 13. [accelerate] Nesting with 0 inner and 1 outer candidates Also removing duplicate rules: 12. Accelerated all simple loops using metering functions (where possible): Start location: __init 10: f3 -> f3 : arg2'=arg2+arg1, [ arg2>=0 ], cost: 3 11: f3 -> [7] : [ arg2==0 && arg1==0 ], cost: NONTERM 13: f3 -> [7] : [ arg2>=0 && -arg1<=0 ], cost: NONTERM 8: __init -> f3 : arg1'=5, arg2'=arg2P_2, [], cost: 3 Chained accelerated rules (with incoming rules): Start location: __init 8: __init -> f3 : arg1'=5, arg2'=arg2P_2, [], cost: 3 14: __init -> f3 : arg1'=5, arg2'=5+arg2P_2, [ arg2P_2>=0 ], cost: 6 15: __init -> [7] : [], cost: NONTERM Removed unreachable locations (and leaf rules with constant cost): Start location: __init 15: __init -> [7] : [], cost: NONTERM ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 15: __init -> [7] : [], cost: NONTERM Computing asymptotic complexity for rule 15 Guard is satisfiable, yielding nontermination Resulting cost NONTERM has complexity: Nonterm Found new complexity Nonterm. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Nonterm Cpx degree: Nonterm Solved cost: NONTERM Rule cost: NONTERM Rule guard: [] NO