WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, arg4'=arg4P_1, [ arg1==arg1P_1 && arg3==arg3P_1 && arg4==arg4P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, arg4'=arg4P_2, [ arg1==arg1P_2 && arg2==arg2P_2 && arg4==arg4P_2 ], cost: 1 2: f3 -> f4 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, arg4'=arg4P_3, [ arg1==arg1P_3 && arg2==arg2P_3 && arg3==arg3P_3 ], cost: 1 3: f4 -> f5 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, arg4'=arg4P_4, [ 0==arg1P_4 && arg2==arg2P_4 && arg3==arg3P_4 && arg4==arg4P_4 ], cost: 1 11: f5 -> f6 : arg1'=arg1P_12, arg2'=arg2P_12, arg3'=arg3P_12, arg4'=arg4P_12, [ arg2 f13 : arg1'=arg1P_14, arg2'=arg2P_14, arg3'=arg3P_14, arg4'=arg4P_14, [ arg2>=arg3 && arg1==arg1P_14 && arg2==arg2P_14 && arg3==arg3P_14 && arg4==arg4P_14 ], cost: 1 4: f7 -> f10 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, arg4'=arg4P_5, [ arg2P_5==1+arg2 && arg1==arg1P_5 && arg3==arg3P_5 && arg4==arg4P_5 ], cost: 1 8: f10 -> f9 : arg1'=arg1P_9, arg2'=arg2P_9, arg3'=arg3P_9, arg4'=arg4P_9, [ arg1==arg1P_9 && arg2==arg2P_9 && arg3==arg3P_9 && arg4==arg4P_9 ], cost: 1 5: f8 -> f11 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, arg4'=arg4P_6, [ arg4P_6==1+arg4 && arg1==arg1P_6 && arg2==arg2P_6 && arg3==arg3P_6 ], cost: 1 9: f11 -> f9 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, arg4'=arg4P_10, [ arg1==arg1P_10 && arg2==arg2P_10 && arg3==arg3P_10 && arg4==arg4P_10 ], cost: 1 6: f6 -> f7 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, arg4'=arg4P_7, [ arg2 f8 : arg1'=arg1P_8, arg2'=arg2P_8, arg3'=arg3P_8, arg4'=arg4P_8, [ arg2>=arg4 && arg1==arg1P_8 && arg2==arg2P_8 && arg3==arg3P_8 && arg4==arg4P_8 ], cost: 1 10: f9 -> f12 : arg1'=arg1P_11, arg2'=arg2P_11, arg3'=arg3P_11, arg4'=arg4P_11, [ arg1P_11==1+arg1 && arg2==arg2P_11 && arg3==arg3P_11 && arg4==arg4P_11 ], cost: 1 12: f12 -> f5 : arg1'=arg1P_13, arg2'=arg2P_13, arg3'=arg3P_13, arg4'=arg4P_13, [ arg1==arg1P_13 && arg2==arg2P_13 && arg3==arg3P_13 && arg4==arg4P_13 ], cost: 1 14: __init -> f1 : arg1'=arg1P_15, arg2'=arg2P_15, arg3'=arg3P_15, arg4'=arg4P_15, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 14: __init -> f1 : arg1'=arg1P_15, arg2'=arg2P_15, arg3'=arg3P_15, arg4'=arg4P_15, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, arg4'=arg4P_1, [ arg1==arg1P_1 && arg3==arg3P_1 && arg4==arg4P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, arg4'=arg4P_2, [ arg1==arg1P_2 && arg2==arg2P_2 && arg4==arg4P_2 ], cost: 1 2: f3 -> f4 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, arg4'=arg4P_3, [ arg1==arg1P_3 && arg2==arg2P_3 && arg3==arg3P_3 ], cost: 1 3: f4 -> f5 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, arg4'=arg4P_4, [ 0==arg1P_4 && arg2==arg2P_4 && arg3==arg3P_4 && arg4==arg4P_4 ], cost: 1 11: f5 -> f6 : arg1'=arg1P_12, arg2'=arg2P_12, arg3'=arg3P_12, arg4'=arg4P_12, [ arg2 f10 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, arg4'=arg4P_5, [ arg2P_5==1+arg2 && arg1==arg1P_5 && arg3==arg3P_5 && arg4==arg4P_5 ], cost: 1 8: f10 -> f9 : arg1'=arg1P_9, arg2'=arg2P_9, arg3'=arg3P_9, arg4'=arg4P_9, [ arg1==arg1P_9 && arg2==arg2P_9 && arg3==arg3P_9 && arg4==arg4P_9 ], cost: 1 5: f8 -> f11 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, arg4'=arg4P_6, [ arg4P_6==1+arg4 && arg1==arg1P_6 && arg2==arg2P_6 && arg3==arg3P_6 ], cost: 1 9: f11 -> f9 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, arg4'=arg4P_10, [ arg1==arg1P_10 && arg2==arg2P_10 && arg3==arg3P_10 && arg4==arg4P_10 ], cost: 1 6: f6 -> f7 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, arg4'=arg4P_7, [ arg2 f8 : arg1'=arg1P_8, arg2'=arg2P_8, arg3'=arg3P_8, arg4'=arg4P_8, [ arg2>=arg4 && arg1==arg1P_8 && arg2==arg2P_8 && arg3==arg3P_8 && arg4==arg4P_8 ], cost: 1 10: f9 -> f12 : arg1'=arg1P_11, arg2'=arg2P_11, arg3'=arg3P_11, arg4'=arg4P_11, [ arg1P_11==1+arg1 && arg2==arg2P_11 && arg3==arg3P_11 && arg4==arg4P_11 ], cost: 1 12: f12 -> f5 : arg1'=arg1P_13, arg2'=arg2P_13, arg3'=arg3P_13, arg4'=arg4P_13, [ arg1==arg1P_13 && arg2==arg2P_13 && arg3==arg3P_13 && arg4==arg4P_13 ], cost: 1 14: __init -> f1 : arg1'=arg1P_15, arg2'=arg2P_15, arg3'=arg3P_15, arg4'=arg4P_15, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg2'=arg2P_1, [], cost: 1 1: f2 -> f3 : arg3'=arg3P_2, [], cost: 1 2: f3 -> f4 : arg4'=arg4P_3, [], cost: 1 3: f4 -> f5 : arg1'=0, [], cost: 1 11: f5 -> f6 : [ arg2 f10 : arg2'=1+arg2, [], cost: 1 8: f10 -> f9 : [], cost: 1 5: f8 -> f11 : arg4'=1+arg4, [], cost: 1 9: f11 -> f9 : [], cost: 1 6: f6 -> f7 : [ arg2 f8 : [ arg2>=arg4 ], cost: 1 10: f9 -> f12 : arg1'=1+arg1, [], cost: 1 12: f12 -> f5 : [], cost: 1 14: __init -> f1 : arg1'=arg1P_15, arg2'=arg2P_15, arg3'=arg3P_15, arg4'=arg4P_15, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 11: f5 -> f6 : [ arg2 f9 : arg2'=1+arg2, [ arg2 f9 : arg4'=1+arg4, [ arg2>=arg4 ], cost: 3 23: f9 -> f5 : arg1'=1+arg1, [], cost: 2 18: __init -> f5 : arg1'=0, arg2'=arg2P_1, arg3'=arg3P_2, arg4'=arg4P_3, [], cost: 5 Eliminated locations (on tree-shaped paths): Start location: __init 24: f5 -> f9 : arg2'=1+arg2, [ arg2 f9 : arg4'=1+arg4, [ arg2=arg4 ], cost: 4 23: f9 -> f5 : arg1'=1+arg1, [], cost: 2 18: __init -> f5 : arg1'=0, arg2'=arg2P_1, arg3'=arg3P_2, arg4'=arg4P_3, [], cost: 5 Eliminated locations (on tree-shaped paths): Start location: __init 26: f5 -> f5 : arg1'=1+arg1, arg2'=1+arg2, [ arg2 f5 : arg1'=1+arg1, arg4'=1+arg4, [ arg2=arg4 ], cost: 6 18: __init -> f5 : arg1'=0, arg2'=arg2P_1, arg3'=arg3P_2, arg4'=arg4P_3, [], cost: 5 Accelerating simple loops of location 4. Accelerating the following rules: 26: f5 -> f5 : arg1'=1+arg1, arg2'=1+arg2, [ arg2 f5 : arg1'=1+arg1, arg4'=1+arg4, [ arg2=arg4 ], cost: 6 Accelerated rule 26 with backward acceleration, yielding the new rule 28. Accelerated rule 26 with backward acceleration, yielding the new rule 29. Accelerated rule 27 with backward acceleration, yielding the new rule 30. [accelerate] Nesting with 3 inner and 2 outer candidates Removing the simple loops: 26 27. Accelerated all simple loops using metering functions (where possible): Start location: __init 28: f5 -> f5 : arg1'=-arg2+arg3+arg1, arg2'=arg3, [ -arg2+arg3>=0 && -1+arg3 f5 : arg1'=-arg2+arg4+arg1, arg2'=arg4, [ -arg2+arg4>=0 && -1+arg4 f5 : arg1'=1+arg2-arg4+arg1, arg4'=1+arg2, [ arg2=0 ], cost: 6+6*arg2-6*arg4 18: __init -> f5 : arg1'=0, arg2'=arg2P_1, arg3'=arg3P_2, arg4'=arg4P_3, [], cost: 5 Chained accelerated rules (with incoming rules): Start location: __init 18: __init -> f5 : arg1'=0, arg2'=arg2P_1, arg3'=arg3P_2, arg4'=arg4P_3, [], cost: 5 31: __init -> f5 : arg1'=arg3P_2-arg2P_1, arg2'=arg3P_2, arg3'=arg3P_2, arg4'=arg4P_3, [ arg3P_2-arg2P_1>=0 && -1+arg3P_2 f5 : arg1'=arg4P_3-arg2P_1, arg2'=arg4P_3, arg3'=arg3P_2, arg4'=arg4P_3, [ arg4P_3-arg2P_1>=0 && -1+arg4P_3 f5 : arg1'=1-arg4P_3+arg2P_1, arg2'=arg2P_1, arg3'=arg3P_2, arg4'=1+arg2P_1, [ arg2P_1=0 ], cost: 11-6*arg4P_3+6*arg2P_1 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 31: __init -> f5 : arg1'=arg3P_2-arg2P_1, arg2'=arg3P_2, arg3'=arg3P_2, arg4'=arg4P_3, [ arg3P_2-arg2P_1>=0 && -1+arg3P_2 f5 : arg1'=arg4P_3-arg2P_1, arg2'=arg4P_3, arg3'=arg3P_2, arg4'=arg4P_3, [ arg4P_3-arg2P_1>=0 && -1+arg4P_3 f5 : arg1'=1-arg4P_3+arg2P_1, arg2'=arg2P_1, arg3'=arg3P_2, arg4'=1+arg2P_1, [ arg2P_1=0 ], cost: 11-6*arg4P_3+6*arg2P_1 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 31: __init -> f5 : arg1'=arg3P_2-arg2P_1, arg2'=arg3P_2, arg3'=arg3P_2, arg4'=arg4P_3, [ arg3P_2-arg2P_1>=0 && -1+arg3P_2 f5 : arg1'=arg4P_3-arg2P_1, arg2'=arg4P_3, arg3'=arg3P_2, arg4'=arg4P_3, [ arg4P_3-arg2P_1>=0 && -1+arg4P_3 f5 : arg1'=1-arg4P_3+arg2P_1, arg2'=arg2P_1, arg3'=arg3P_2, arg4'=1+arg2P_1, [ arg2P_1=0 ], cost: 11-6*arg4P_3+6*arg2P_1 Computing asymptotic complexity for rule 31 Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 32 Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 33 Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [] WORST_CASE(Omega(1),?)