NO ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ arg1==arg1P_1 && 0==arg2P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, [ 0==arg1P_2 && arg2==arg2P_2 ], cost: 1 8: f3 -> f4 : arg1'=arg1P_9, arg2'=arg2P_9, [ arg1<=arg2 && arg1==arg1P_9 && arg2==arg2P_9 ], cost: 1 10: f3 -> f10 : arg1'=arg1P_11, arg2'=arg2P_11, [ arg1>arg2 && arg1==arg1P_11 && arg2==arg2P_11 ], cost: 1 2: f5 -> f8 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg2P_3==2+arg2 && arg1==arg1P_3 ], cost: 1 5: f8 -> f7 : arg1'=arg1P_6, arg2'=arg2P_6, [ arg1==arg1P_6 && arg2==arg2P_6 ], cost: 1 3: f4 -> f5 : arg1'=arg1P_4, arg2'=arg2P_4, [ arg2-arg1<1 && arg1==arg1P_4 && arg2==arg2P_4 ], cost: 1 4: f4 -> f6 : arg1'=arg1P_5, arg2'=arg2P_5, [ arg2-arg1>=1 && arg1==arg1P_5 && arg2==arg2P_5 ], cost: 1 6: f6 -> f7 : arg1'=arg1P_7, arg2'=arg2P_7, [ arg1==arg1P_7 && arg2==arg2P_7 ], cost: 1 7: f7 -> f9 : arg1'=arg1P_8, arg2'=arg2P_8, [ arg1P_8==1+arg1 && arg2==arg2P_8 ], cost: 1 9: f9 -> f3 : arg1'=arg1P_10, arg2'=arg2P_10, [ arg1==arg1P_10 && arg2==arg2P_10 ], cost: 1 11: __init -> f1 : arg1'=arg1P_12, arg2'=arg2P_12, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 11: __init -> f1 : arg1'=arg1P_12, arg2'=arg2P_12, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ arg1==arg1P_1 && 0==arg2P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, [ 0==arg1P_2 && arg2==arg2P_2 ], cost: 1 8: f3 -> f4 : arg1'=arg1P_9, arg2'=arg2P_9, [ arg1<=arg2 && arg1==arg1P_9 && arg2==arg2P_9 ], cost: 1 2: f5 -> f8 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg2P_3==2+arg2 && arg1==arg1P_3 ], cost: 1 5: f8 -> f7 : arg1'=arg1P_6, arg2'=arg2P_6, [ arg1==arg1P_6 && arg2==arg2P_6 ], cost: 1 3: f4 -> f5 : arg1'=arg1P_4, arg2'=arg2P_4, [ arg2-arg1<1 && arg1==arg1P_4 && arg2==arg2P_4 ], cost: 1 4: f4 -> f6 : arg1'=arg1P_5, arg2'=arg2P_5, [ arg2-arg1>=1 && arg1==arg1P_5 && arg2==arg2P_5 ], cost: 1 6: f6 -> f7 : arg1'=arg1P_7, arg2'=arg2P_7, [ arg1==arg1P_7 && arg2==arg2P_7 ], cost: 1 7: f7 -> f9 : arg1'=arg1P_8, arg2'=arg2P_8, [ arg1P_8==1+arg1 && arg2==arg2P_8 ], cost: 1 9: f9 -> f3 : arg1'=arg1P_10, arg2'=arg2P_10, [ arg1==arg1P_10 && arg2==arg2P_10 ], cost: 1 11: __init -> f1 : arg1'=arg1P_12, arg2'=arg2P_12, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg2'=0, [], cost: 1 1: f2 -> f3 : arg1'=0, [], cost: 1 8: f3 -> f4 : [ arg1<=arg2 ], cost: 1 2: f5 -> f8 : arg2'=2+arg2, [], cost: 1 5: f8 -> f7 : [], cost: 1 3: f4 -> f5 : [ arg2-arg1<1 ], cost: 1 4: f4 -> f6 : [ arg2-arg1>=1 ], cost: 1 6: f6 -> f7 : [], cost: 1 7: f7 -> f9 : arg1'=1+arg1, [], cost: 1 9: f9 -> f3 : [], cost: 1 11: __init -> f1 : arg1'=arg1P_12, arg2'=arg2P_12, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 8: f3 -> f4 : [ arg1<=arg2 ], cost: 1 15: f4 -> f7 : [ arg2-arg1>=1 ], cost: 2 16: f4 -> f7 : arg2'=2+arg2, [ arg2-arg1<1 ], cost: 3 17: f7 -> f3 : arg1'=1+arg1, [], cost: 2 13: __init -> f3 : arg1'=0, arg2'=0, [], cost: 3 Eliminated locations (on tree-shaped paths): Start location: __init 18: f3 -> f7 : [ arg2-arg1>=1 ], cost: 3 19: f3 -> f7 : arg2'=2+arg2, [ arg1<=arg2 && arg2-arg1<1 ], cost: 4 17: f7 -> f3 : arg1'=1+arg1, [], cost: 2 13: __init -> f3 : arg1'=0, arg2'=0, [], cost: 3 Eliminated locations (on tree-shaped paths): Start location: __init 20: f3 -> f3 : arg1'=1+arg1, [ arg2-arg1>=1 ], cost: 5 21: f3 -> f3 : arg1'=1+arg1, arg2'=2+arg2, [ arg1<=arg2 && arg2-arg1<1 ], cost: 6 13: __init -> f3 : arg1'=0, arg2'=0, [], cost: 3 Accelerating simple loops of location 2. Simplified some of the simple loops (and removed duplicate rules). Accelerating the following rules: 20: f3 -> f3 : arg1'=1+arg1, [ arg2-arg1>=1 ], cost: 5 21: f3 -> f3 : arg1'=1+arg1, arg2'=2+arg2, [ -arg2+arg1==0 ], cost: 6 Accelerated rule 20 with backward acceleration, yielding the new rule 22. Failed to prove monotonicity of the guard of rule 21. [accelerate] Nesting with 2 inner and 2 outer candidates Nested simple loops 21 (outer loop) and 22 (inner loop) with Rule(2 | arg2-arg1>=0, | NONTERM || 11 | ), resulting in the new rules: 23, 24. Nested simple loops 20 (outer loop) and 21 (inner loop) with Rule(2 | -arg2+arg1==0, | NONTERM || 11 | ), resulting in the new rules: 25, 26. Removing the simple loops: 20 21. Also removing duplicate rules: 24. Accelerated all simple loops using metering functions (where possible): Start location: __init 22: f3 -> f3 : arg1'=arg2, [ arg2-arg1>=0 ], cost: 5*arg2-5*arg1 23: f3 -> [11] : [ arg2-arg1>=0 ], cost: NONTERM 25: f3 -> [11] : [ -arg2+arg1==0 ], cost: NONTERM 26: f3 -> [11] : [ 1-arg2+arg1==0 ], cost: NONTERM 13: __init -> f3 : arg1'=0, arg2'=0, [], cost: 3 Chained accelerated rules (with incoming rules): Start location: __init 13: __init -> f3 : arg1'=0, arg2'=0, [], cost: 3 27: __init -> f3 : arg1'=0, arg2'=0, [], cost: 3 28: __init -> [11] : [], cost: NONTERM 29: __init -> [11] : [], cost: NONTERM Removed unreachable locations (and leaf rules with constant cost): Start location: __init 28: __init -> [11] : [], cost: NONTERM 29: __init -> [11] : [], cost: NONTERM ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 29: __init -> [11] : [], cost: NONTERM Computing asymptotic complexity for rule 29 Guard is satisfiable, yielding nontermination Resulting cost NONTERM has complexity: Nonterm Found new complexity Nonterm. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Nonterm Cpx degree: Nonterm Solved cost: NONTERM Rule cost: NONTERM Rule guard: [] NO