WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2==arg2P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1==arg1P_2 ], cost: 1 8: f3 -> f4 : arg1'=arg1P_9, arg2'=arg2P_9, [ arg1>=0 && arg1==arg1P_9 && arg2==arg2P_9 ], cost: 1 10: f3 -> f10 : arg1'=arg1P_11, arg2'=arg2P_11, [ arg1<0 && arg1==arg1P_11 && arg2==arg2P_11 ], cost: 1 2: f4 -> f5 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg1==arg1P_3 && 1==arg2P_3 ], cost: 1 4: f5 -> f6 : arg1'=arg1P_5, arg2'=arg2P_5, [ arg2 f8 : arg1'=arg1P_7, arg2'=arg2P_7, [ arg2>=arg1 && arg1==arg1P_7 && arg2==arg2P_7 ], cost: 1 3: f6 -> f7 : arg1'=arg1P_4, arg2'=arg2P_4, [ arg2P_4==2*arg2 && arg1==arg1P_4 ], cost: 1 5: f7 -> f5 : arg1'=arg1P_6, arg2'=arg2P_6, [ arg1==arg1P_6 && arg2==arg2P_6 ], cost: 1 7: f8 -> f9 : arg1'=arg1P_8, arg2'=arg2P_8, [ arg1P_8==-1+arg1 && arg2==arg2P_8 ], cost: 1 9: f9 -> f3 : arg1'=arg1P_10, arg2'=arg2P_10, [ arg1==arg1P_10 && arg2==arg2P_10 ], cost: 1 11: __init -> f1 : arg1'=arg1P_12, arg2'=arg2P_12, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 11: __init -> f1 : arg1'=arg1P_12, arg2'=arg2P_12, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2==arg2P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1==arg1P_2 ], cost: 1 8: f3 -> f4 : arg1'=arg1P_9, arg2'=arg2P_9, [ arg1>=0 && arg1==arg1P_9 && arg2==arg2P_9 ], cost: 1 2: f4 -> f5 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg1==arg1P_3 && 1==arg2P_3 ], cost: 1 4: f5 -> f6 : arg1'=arg1P_5, arg2'=arg2P_5, [ arg2 f8 : arg1'=arg1P_7, arg2'=arg2P_7, [ arg2>=arg1 && arg1==arg1P_7 && arg2==arg2P_7 ], cost: 1 3: f6 -> f7 : arg1'=arg1P_4, arg2'=arg2P_4, [ arg2P_4==2*arg2 && arg1==arg1P_4 ], cost: 1 5: f7 -> f5 : arg1'=arg1P_6, arg2'=arg2P_6, [ arg1==arg1P_6 && arg2==arg2P_6 ], cost: 1 7: f8 -> f9 : arg1'=arg1P_8, arg2'=arg2P_8, [ arg1P_8==-1+arg1 && arg2==arg2P_8 ], cost: 1 9: f9 -> f3 : arg1'=arg1P_10, arg2'=arg2P_10, [ arg1==arg1P_10 && arg2==arg2P_10 ], cost: 1 11: __init -> f1 : arg1'=arg1P_12, arg2'=arg2P_12, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, [], cost: 1 1: f2 -> f3 : arg2'=arg2P_2, [], cost: 1 8: f3 -> f4 : [ arg1>=0 ], cost: 1 2: f4 -> f5 : arg2'=1, [], cost: 1 4: f5 -> f6 : [ arg2 f8 : [ arg2>=arg1 ], cost: 1 3: f6 -> f7 : arg2'=2*arg2, [], cost: 1 5: f7 -> f5 : [], cost: 1 7: f8 -> f9 : arg1'=-1+arg1, [], cost: 1 9: f9 -> f3 : [], cost: 1 11: __init -> f1 : arg1'=arg1P_12, arg2'=arg2P_12, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 14: f3 -> f5 : arg2'=1, [ arg1>=0 ], cost: 2 17: f5 -> f5 : arg2'=2*arg2, [ arg2 f3 : arg1'=-1+arg1, [ arg2>=arg1 ], cost: 3 13: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 Accelerating simple loops of location 4. Accelerating the following rules: 17: f5 -> f5 : arg2'=2*arg2, [ arg2 f5 : arg2'=1, [ arg1>=0 ], cost: 2 17: f5 -> f5 : arg2'=2*arg2, [ arg2 f3 : arg1'=-1+arg1, [ arg2>=arg1 ], cost: 3 19: f5 -> [11] : [ arg2 f5 : arg2'=arg2*2^k, [ 1-arg2<=0 && k>=0 && arg2*2^(-1+k) f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 Chained accelerated rules (with incoming rules): Start location: __init 14: f3 -> f5 : arg2'=1, [ arg1>=0 ], cost: 2 21: f3 -> f5 : arg2'=2, [ 1 f5 : arg2'=2^k, [ arg1>=0 && k>=0 && 2^(-1+k) f3 : arg1'=-1+arg1, [ arg2>=arg1 ], cost: 3 13: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 14: f3 -> f5 : arg2'=1, [ arg1>=0 ], cost: 2 21: f3 -> f5 : arg2'=2, [ 1 f5 : arg2'=2^k, [ arg1>=0 && k>=0 && 2^(-1+k) f3 : arg1'=-1+arg1, [ arg2>=arg1 ], cost: 3 13: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 Eliminated locations (on tree-shaped paths): Start location: __init 23: f3 -> f3 : arg1'=-1+arg1, arg2'=1, [ arg1>=0 && 1>=arg1 ], cost: 5 24: f3 -> f3 : arg1'=-1+arg1, arg2'=2, [ 1=arg1 ], cost: 8 25: f3 -> f3 : arg1'=-1+arg1, arg2'=2^k, [ arg1>=0 && k>=0 && 2^(-1+k)=arg1 ], cost: 5+3*k 13: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 Accelerating simple loops of location 2. Simplified some of the simple loops (and removed duplicate rules). Accelerating the following rules: 23: f3 -> f3 : arg1'=-1+arg1, arg2'=1, [ arg1>=0 && 1>=arg1 ], cost: 5 24: f3 -> f3 : arg1'=-1+arg1, arg2'=2, [ 2-arg1==0 ], cost: 8 25: f3 -> f3 : arg1'=-1+arg1, arg2'=2^k, [ arg1>=0 && k>=0 && 2^(-1+k)=arg1 ], cost: 5+3*k Accelerated rule 23 with backward acceleration, yielding the new rule 26. Failed to prove monotonicity of the guard of rule 24. Failed to prove monotonicity of the guard of rule 25. [accelerate] Nesting with 3 inner and 3 outer candidates Removing the simple loops: 23. Accelerated all simple loops using metering functions (where possible): Start location: __init 24: f3 -> f3 : arg1'=-1+arg1, arg2'=2, [ 2-arg1==0 ], cost: 8 25: f3 -> f3 : arg1'=-1+arg1, arg2'=2^k, [ arg1>=0 && k>=0 && 2^(-1+k)=arg1 ], cost: 5+3*k 26: f3 -> f3 : arg1'=-1, arg2'=1, [ 1>=arg1 && 1+arg1>=1 ], cost: 5+5*arg1 13: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 Chained accelerated rules (with incoming rules): Start location: __init 13: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 27: __init -> f3 : arg1'=1, arg2'=2, [], cost: 11 28: __init -> f3 : arg1'=-1+arg1P_1, arg2'=2^k, [ arg1P_1>=0 && k>=0 && 2^(-1+k)=arg1P_1 ], cost: 8+3*k 29: __init -> f3 : arg1'=-1, arg2'=1, [ 1>=arg1P_1 && 1+arg1P_1>=1 ], cost: 8+5*arg1P_1 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 28: __init -> f3 : arg1'=-1+arg1P_1, arg2'=2^k, [ arg1P_1>=0 && k>=0 && 2^(-1+k)=arg1P_1 ], cost: 8+3*k 29: __init -> f3 : arg1'=-1, arg2'=1, [ 1>=arg1P_1 && 1+arg1P_1>=1 ], cost: 8+5*arg1P_1 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 28: __init -> f3 : arg1'=-1+arg1P_1, arg2'=2^k, [ arg1P_1>=0 && k>=0 && 2^(-1+k)=arg1P_1 ], cost: 8+3*k 29: __init -> f3 : arg1'=-1, arg2'=1, [ 1>=arg1P_1 && 1+arg1P_1>=1 ], cost: 8+5*arg1P_1 Computing asymptotic complexity for rule 29 Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 28 Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [] WORST_CASE(Omega(1),?)