WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg2==arg2P_1 && arg3==arg3P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg1==arg1P_2 && arg3==arg3P_2 ], cost: 1 2: f3 -> f4 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ arg1==arg1P_3 && arg2==arg2P_3 ], cost: 1 5: f4 -> f5 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [ arg1>0 && arg1 f8 : arg1'=arg1P_8, arg2'=arg2P_8, arg3'=arg3P_8, [ arg1<=0 && arg1==arg1P_8 && arg2==arg2P_8 && arg3==arg3P_8 ], cost: 1 8: f4 -> f8 : arg1'=arg1P_9, arg2'=arg2P_9, arg3'=arg3P_9, [ arg1>=arg3 && arg1==arg1P_9 && arg2==arg2P_9 && arg3==arg3P_9 ], cost: 1 3: f5 -> f6 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg1P_4==-5+arg2-arg1 && arg2==arg2P_4 && arg3==arg3P_4 ], cost: 1 4: f6 -> f7 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ arg2P_5==2*arg2 && arg1==arg1P_5 && arg3==arg3P_5 ], cost: 1 6: f7 -> f4 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, [ arg1==arg1P_7 && arg2==arg2P_7 && arg3==arg3P_7 ], cost: 1 9: __init -> f1 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 9: __init -> f1 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg2==arg2P_1 && arg3==arg3P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg1==arg1P_2 && arg3==arg3P_2 ], cost: 1 2: f3 -> f4 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ arg1==arg1P_3 && arg2==arg2P_3 ], cost: 1 5: f4 -> f5 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [ arg1>0 && arg1 f6 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg1P_4==-5+arg2-arg1 && arg2==arg2P_4 && arg3==arg3P_4 ], cost: 1 4: f6 -> f7 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ arg2P_5==2*arg2 && arg1==arg1P_5 && arg3==arg3P_5 ], cost: 1 6: f7 -> f4 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, [ arg1==arg1P_7 && arg2==arg2P_7 && arg3==arg3P_7 ], cost: 1 9: __init -> f1 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, [], cost: 1 1: f2 -> f3 : arg2'=arg2P_2, [], cost: 1 2: f3 -> f4 : arg3'=arg3P_3, [], cost: 1 5: f4 -> f5 : [ arg1>0 && arg1 f6 : arg1'=-5+arg2-arg1, [], cost: 1 4: f6 -> f7 : arg2'=2*arg2, [], cost: 1 6: f7 -> f4 : [], cost: 1 9: __init -> f1 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 15: f4 -> f4 : arg1'=-5+arg2-arg1, arg2'=2*arg2, [ arg1>0 && arg1 f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 Accelerating simple loops of location 3. Accelerating the following rules: 15: f4 -> f4 : arg1'=-5+arg2-arg1, arg2'=2*arg2, [ arg1>0 && arg1 f4 : arg1'=-1/3*arg2+1/3*arg2*4^k+arg1, arg2'=arg2*4^k, [ arg1>0 && -5+arg2-arg1>0 && k>=0 && -1/3*arg2+arg1+1/3*arg2*4^(-1+k) f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 Chained accelerated rules (with incoming rules): Start location: __init 12: __init -> f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 17: __init -> f4 : arg1'=arg1P_1-1/3*arg2P_2+1/3*4^k*arg2P_2, arg2'=4^k*arg2P_2, arg3'=arg3P_3, [ arg1P_1>0 && -5-arg1P_1+arg2P_2>0 && k>=0 && arg1P_1+1/3*arg2P_2*4^(-1+k)-1/3*arg2P_2 f4 : arg1'=arg1P_1-1/3*arg2P_2+1/3*4^k*arg2P_2, arg2'=4^k*arg2P_2, arg3'=arg3P_3, [ arg1P_1>0 && -5-arg1P_1+arg2P_2>0 && k>=0 && arg1P_1+1/3*arg2P_2*4^(-1+k)-1/3*arg2P_2 f4 : arg1'=arg1P_1-1/3*arg2P_2+1/3*4^k*arg2P_2, arg2'=4^k*arg2P_2, arg3'=arg3P_3, [ arg1P_1>0 && -5-arg1P_1+arg2P_2>0 && k>=0 && arg1P_1+1/3*arg2P_2*4^(-1+k)-1/3*arg2P_2