WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg2==arg2P_1 && arg3==arg3P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg1==arg1P_2 && arg3==arg3P_2 ], cost: 1 2: f3 -> f4 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ arg1==arg1P_3 && arg2==arg2P_3 ], cost: 1 7: f4 -> f5 : arg1'=arg1P_8, arg2'=arg2P_8, arg3'=arg3P_8, [ arg2>0 && arg1==arg1P_8 && arg2==arg2P_8 && arg3==arg3P_8 ], cost: 1 8: f4 -> f6 : arg1'=arg1P_9, arg2'=arg2P_9, arg3'=arg3P_9, [ arg2<=0 && arg1==arg1P_9 && arg2==arg2P_9 && arg3==arg3P_9 ], cost: 1 3: f8 -> f9 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg3P_4==arg2+arg3 && arg1==arg1P_4 && arg2==arg2P_4 ], cost: 1 5: f9 -> f5 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [ arg1==arg1P_6 && arg2==arg2P_6 && arg3==arg3P_6 ], cost: 1 4: f5 -> f8 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ arg1>=arg3 && arg1==arg1P_5 && arg2==arg2P_5 && arg3==arg3P_5 ], cost: 1 6: f5 -> f10 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, [ arg1 f7 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [ arg1==arg1P_10 && arg2==arg2P_10 && arg3==arg3P_10 ], cost: 1 10: f6 -> f7 : arg1'=arg1P_11, arg2'=arg2P_11, arg3'=arg3P_11, [ arg1==arg1P_11 && arg2==arg2P_11 && arg3==arg3P_11 ], cost: 1 11: __init -> f1 : arg1'=arg1P_12, arg2'=arg2P_12, arg3'=arg3P_12, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 11: __init -> f1 : arg1'=arg1P_12, arg2'=arg2P_12, arg3'=arg3P_12, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg2==arg2P_1 && arg3==arg3P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg1==arg1P_2 && arg3==arg3P_2 ], cost: 1 2: f3 -> f4 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ arg1==arg1P_3 && arg2==arg2P_3 ], cost: 1 7: f4 -> f5 : arg1'=arg1P_8, arg2'=arg2P_8, arg3'=arg3P_8, [ arg2>0 && arg1==arg1P_8 && arg2==arg2P_8 && arg3==arg3P_8 ], cost: 1 3: f8 -> f9 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg3P_4==arg2+arg3 && arg1==arg1P_4 && arg2==arg2P_4 ], cost: 1 5: f9 -> f5 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [ arg1==arg1P_6 && arg2==arg2P_6 && arg3==arg3P_6 ], cost: 1 4: f5 -> f8 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ arg1>=arg3 && arg1==arg1P_5 && arg2==arg2P_5 && arg3==arg3P_5 ], cost: 1 11: __init -> f1 : arg1'=arg1P_12, arg2'=arg2P_12, arg3'=arg3P_12, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, [], cost: 1 1: f2 -> f3 : arg2'=arg2P_2, [], cost: 1 2: f3 -> f4 : arg3'=arg3P_3, [], cost: 1 7: f4 -> f5 : [ arg2>0 ], cost: 1 3: f8 -> f9 : arg3'=arg2+arg3, [], cost: 1 5: f9 -> f5 : [], cost: 1 4: f5 -> f8 : [ arg1>=arg3 ], cost: 1 11: __init -> f1 : arg1'=arg1P_12, arg2'=arg2P_12, arg3'=arg3P_12, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 17: f5 -> f5 : arg3'=arg2+arg3, [ arg1>=arg3 ], cost: 3 15: __init -> f5 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [ arg2P_2>0 ], cost: 5 Accelerating simple loops of location 6. Accelerating the following rules: 17: f5 -> f5 : arg3'=arg2+arg3, [ arg1>=arg3 ], cost: 3 [test] deduced invariant -arg2<=0 Accelerated rule 17 with non-termination, yielding the new rule 18. Accelerated rule 17 with non-termination, yielding the new rule 19. Accelerated rule 17 with backward acceleration, yielding the new rule 20. [accelerate] Nesting with 1 inner and 1 outer candidates Also removing duplicate rules: 18. Accelerated all simple loops using metering functions (where possible): Start location: __init 17: f5 -> f5 : arg3'=arg2+arg3, [ arg1>=arg3 ], cost: 3 19: f5 -> [11] : [ arg1>=arg3 && arg2==0 && arg3==0 && arg1==0 ], cost: NONTERM 20: f5 -> f5 : arg3'=arg2*k+arg3, [ -arg2<=0 && k>=0 && arg1>=arg3+arg2*(-1+k) ], cost: 3*k 15: __init -> f5 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [ arg2P_2>0 ], cost: 5 Chained accelerated rules (with incoming rules): Start location: __init 15: __init -> f5 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [ arg2P_2>0 ], cost: 5 21: __init -> f5 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg2P_2+arg3P_3, [ arg2P_2>0 && arg1P_1>=arg3P_3 ], cost: 8 22: __init -> f5 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=k*arg2P_2+arg3P_3, [ arg2P_2>0 && k>=0 && arg1P_1>=(-1+k)*arg2P_2+arg3P_3 ], cost: 5+3*k Removed unreachable locations (and leaf rules with constant cost): Start location: __init 22: __init -> f5 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=k*arg2P_2+arg3P_3, [ arg2P_2>0 && k>=0 && arg1P_1>=(-1+k)*arg2P_2+arg3P_3 ], cost: 5+3*k ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 22: __init -> f5 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=k*arg2P_2+arg3P_3, [ arg2P_2>0 && k>=0 && arg1P_1>=(-1+k)*arg2P_2+arg3P_3 ], cost: 5+3*k Computing asymptotic complexity for rule 22 Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [] WORST_CASE(Omega(1),?)