WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2==arg2P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1==arg1P_2 ], cost: 1 8: f3 -> f4 : arg1'=arg1P_9, arg2'=arg2P_9, [ arg1>=0 && arg1==arg1P_9 && arg2==arg2P_9 ], cost: 1 9: f3 -> f4 : arg1'=arg1P_10, arg2'=arg2P_10, [ arg2>=0 && arg1==arg1P_10 && arg2==arg2P_10 ], cost: 1 11: f3 -> f10 : arg1'=arg1P_12, arg2'=arg2P_12, [ arg1<0 && arg2<0 && arg1==arg1P_12 && arg2==arg2P_12 ], cost: 1 2: f5 -> f8 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg1P_3==-1+arg1 && arg2==arg2P_3 ], cost: 1 6: f8 -> f7 : arg1'=arg1P_7, arg2'=arg2P_7, [ arg1==arg1P_7 && arg2==arg2P_7 ], cost: 1 3: f6 -> f9 : arg1'=arg1P_4, arg2'=arg2P_4, [ arg2P_4==-1+arg2 && arg1==arg1P_4 ], cost: 1 7: f9 -> f7 : arg1'=arg1P_8, arg2'=arg2P_8, [ arg1==arg1P_8 && arg2==arg2P_8 ], cost: 1 4: f4 -> f5 : arg1'=arg1P_5, arg2'=arg2P_5, [ arg1>=0 && arg1==arg1P_5 && arg2==arg2P_5 ], cost: 1 5: f4 -> f6 : arg1'=arg1P_6, arg2'=arg2P_6, [ arg1<0 && arg1==arg1P_6 && arg2==arg2P_6 ], cost: 1 10: f7 -> f3 : arg1'=arg1P_11, arg2'=arg2P_11, [ arg1==arg1P_11 && arg2==arg2P_11 ], cost: 1 12: __init -> f1 : arg1'=arg1P_13, arg2'=arg2P_13, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 12: __init -> f1 : arg1'=arg1P_13, arg2'=arg2P_13, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2==arg2P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1==arg1P_2 ], cost: 1 8: f3 -> f4 : arg1'=arg1P_9, arg2'=arg2P_9, [ arg1>=0 && arg1==arg1P_9 && arg2==arg2P_9 ], cost: 1 9: f3 -> f4 : arg1'=arg1P_10, arg2'=arg2P_10, [ arg2>=0 && arg1==arg1P_10 && arg2==arg2P_10 ], cost: 1 2: f5 -> f8 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg1P_3==-1+arg1 && arg2==arg2P_3 ], cost: 1 6: f8 -> f7 : arg1'=arg1P_7, arg2'=arg2P_7, [ arg1==arg1P_7 && arg2==arg2P_7 ], cost: 1 3: f6 -> f9 : arg1'=arg1P_4, arg2'=arg2P_4, [ arg2P_4==-1+arg2 && arg1==arg1P_4 ], cost: 1 7: f9 -> f7 : arg1'=arg1P_8, arg2'=arg2P_8, [ arg1==arg1P_8 && arg2==arg2P_8 ], cost: 1 4: f4 -> f5 : arg1'=arg1P_5, arg2'=arg2P_5, [ arg1>=0 && arg1==arg1P_5 && arg2==arg2P_5 ], cost: 1 5: f4 -> f6 : arg1'=arg1P_6, arg2'=arg2P_6, [ arg1<0 && arg1==arg1P_6 && arg2==arg2P_6 ], cost: 1 10: f7 -> f3 : arg1'=arg1P_11, arg2'=arg2P_11, [ arg1==arg1P_11 && arg2==arg2P_11 ], cost: 1 12: __init -> f1 : arg1'=arg1P_13, arg2'=arg2P_13, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, [], cost: 1 1: f2 -> f3 : arg2'=arg2P_2, [], cost: 1 8: f3 -> f4 : [ arg1>=0 ], cost: 1 9: f3 -> f4 : [ arg2>=0 ], cost: 1 2: f5 -> f8 : arg1'=-1+arg1, [], cost: 1 6: f8 -> f7 : [], cost: 1 3: f6 -> f9 : arg2'=-1+arg2, [], cost: 1 7: f9 -> f7 : [], cost: 1 4: f4 -> f5 : [ arg1>=0 ], cost: 1 5: f4 -> f6 : [ arg1<0 ], cost: 1 10: f7 -> f3 : [], cost: 1 12: __init -> f1 : arg1'=arg1P_13, arg2'=arg2P_13, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 8: f3 -> f4 : [ arg1>=0 ], cost: 1 9: f3 -> f4 : [ arg2>=0 ], cost: 1 17: f4 -> f7 : arg1'=-1+arg1, [ arg1>=0 ], cost: 3 18: f4 -> f7 : arg2'=-1+arg2, [ arg1<0 ], cost: 3 10: f7 -> f3 : [], cost: 1 14: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 Eliminated locations (on tree-shaped paths): Start location: __init 19: f3 -> f7 : arg1'=-1+arg1, [ arg1>=0 ], cost: 4 20: f3 -> f7 : arg1'=-1+arg1, [ arg2>=0 && arg1>=0 ], cost: 4 21: f3 -> f7 : arg2'=-1+arg2, [ arg2>=0 && arg1<0 ], cost: 4 10: f7 -> f3 : [], cost: 1 14: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 Eliminated locations (on tree-shaped paths): Start location: __init 22: f3 -> f3 : arg1'=-1+arg1, [ arg1>=0 ], cost: 5 23: f3 -> f3 : arg1'=-1+arg1, [ arg2>=0 && arg1>=0 ], cost: 5 24: f3 -> f3 : arg2'=-1+arg2, [ arg2>=0 && arg1<0 ], cost: 5 14: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 Accelerating simple loops of location 2. Accelerating the following rules: 22: f3 -> f3 : arg1'=-1+arg1, [ arg1>=0 ], cost: 5 23: f3 -> f3 : arg1'=-1+arg1, [ arg2>=0 && arg1>=0 ], cost: 5 24: f3 -> f3 : arg2'=-1+arg2, [ arg2>=0 && arg1<0 ], cost: 5 Accelerated rule 22 with backward acceleration, yielding the new rule 25. Accelerated rule 23 with backward acceleration, yielding the new rule 26. Accelerated rule 24 with backward acceleration, yielding the new rule 27. [accelerate] Nesting with 3 inner and 3 outer candidates Removing the simple loops: 22 23 24. Accelerated all simple loops using metering functions (where possible): Start location: __init 25: f3 -> f3 : arg1'=-1, [ 1+arg1>=0 ], cost: 5+5*arg1 26: f3 -> f3 : arg1'=-1, [ arg2>=0 && 1+arg1>=0 ], cost: 5+5*arg1 27: f3 -> f3 : arg2'=-1, [ arg1<0 && 1+arg2>=0 ], cost: 5+5*arg2 14: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 Chained accelerated rules (with incoming rules): Start location: __init 14: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 28: __init -> f3 : arg1'=-1, arg2'=arg2P_2, [ 1+arg1P_1>=0 ], cost: 8+5*arg1P_1 29: __init -> f3 : arg1'=-1, arg2'=arg2P_2, [ arg2P_2>=0 && 1+arg1P_1>=0 ], cost: 8+5*arg1P_1 30: __init -> f3 : arg1'=arg1P_1, arg2'=-1, [ arg1P_1<0 && 1+arg2P_2>=0 ], cost: 8+5*arg2P_2 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 28: __init -> f3 : arg1'=-1, arg2'=arg2P_2, [ 1+arg1P_1>=0 ], cost: 8+5*arg1P_1 29: __init -> f3 : arg1'=-1, arg2'=arg2P_2, [ arg2P_2>=0 && 1+arg1P_1>=0 ], cost: 8+5*arg1P_1 30: __init -> f3 : arg1'=arg1P_1, arg2'=-1, [ arg1P_1<0 && 1+arg2P_2>=0 ], cost: 8+5*arg2P_2 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 28: __init -> f3 : arg1'=-1, arg2'=arg2P_2, [ 1+arg1P_1>=0 ], cost: 8+5*arg1P_1 29: __init -> f3 : arg1'=-1, arg2'=arg2P_2, [ arg2P_2>=0 && 1+arg1P_1>=0 ], cost: 8+5*arg1P_1 30: __init -> f3 : arg1'=arg1P_1, arg2'=-1, [ arg1P_1<0 && 1+arg2P_2>=0 ], cost: 8+5*arg2P_2 Computing asymptotic complexity for rule 28 Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 29 Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 30 Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [] WORST_CASE(Omega(1),?)