NO ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg2==arg2P_1 && arg3==arg3P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg1==arg1P_2 && arg3==arg3P_2 ], cost: 1 5: f3 -> f4 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [ -arg2+arg1>=1 && arg1==arg1P_6 && arg2==arg2P_6 && arg3==arg3P_6 ], cost: 1 7: f3 -> f8 : arg1'=arg1P_8, arg2'=arg2P_8, arg3'=arg3P_8, [ -arg2+arg1<1 && arg1==arg1P_8 && arg2==arg2P_8 && arg3==arg3P_8 ], cost: 1 2: f4 -> f5 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ arg1P_3==-x7_1+arg1 && arg2==arg2P_3 && arg3==arg3P_3 ], cost: 1 3: f5 -> f6 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg3P_4==1+x28_1 && arg1==arg1P_4 && arg2==arg2P_4 ], cost: 1 4: f6 -> f7 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ arg2P_5==arg2+arg3 && arg1==arg1P_5 && arg3==arg3P_5 ], cost: 1 6: f7 -> f3 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, [ arg1==arg1P_7 && arg2==arg2P_7 && arg3==arg3P_7 ], cost: 1 8: __init -> f1 : arg1'=arg1P_9, arg2'=arg2P_9, arg3'=arg3P_9, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 8: __init -> f1 : arg1'=arg1P_9, arg2'=arg2P_9, arg3'=arg3P_9, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg2==arg2P_1 && arg3==arg3P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg1==arg1P_2 && arg3==arg3P_2 ], cost: 1 5: f3 -> f4 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [ -arg2+arg1>=1 && arg1==arg1P_6 && arg2==arg2P_6 && arg3==arg3P_6 ], cost: 1 2: f4 -> f5 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ arg1P_3==-x7_1+arg1 && arg2==arg2P_3 && arg3==arg3P_3 ], cost: 1 3: f5 -> f6 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg3P_4==1+x28_1 && arg1==arg1P_4 && arg2==arg2P_4 ], cost: 1 4: f6 -> f7 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ arg2P_5==arg2+arg3 && arg1==arg1P_5 && arg3==arg3P_5 ], cost: 1 6: f7 -> f3 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, [ arg1==arg1P_7 && arg2==arg2P_7 && arg3==arg3P_7 ], cost: 1 8: __init -> f1 : arg1'=arg1P_9, arg2'=arg2P_9, arg3'=arg3P_9, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, [], cost: 1 1: f2 -> f3 : arg2'=arg2P_2, [], cost: 1 5: f3 -> f4 : [ -arg2+arg1>=1 ], cost: 1 2: f4 -> f5 : arg1'=-x7_1+arg1, [], cost: 1 3: f5 -> f6 : arg3'=1+x28_1, [], cost: 1 4: f6 -> f7 : arg2'=arg2+arg3, [], cost: 1 6: f7 -> f3 : [], cost: 1 8: __init -> f1 : arg1'=arg1P_9, arg2'=arg2P_9, arg3'=arg3P_9, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 14: f3 -> f3 : arg1'=-x7_1+arg1, arg2'=1+arg2+x28_1, arg3'=1+x28_1, [ -arg2+arg1>=1 ], cost: 5 10: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_9, [], cost: 3 Accelerating simple loops of location 2. Accelerating the following rules: 14: f3 -> f3 : arg1'=-x7_1+arg1, arg2'=1+arg2+x28_1, arg3'=1+x28_1, [ -arg2+arg1>=1 ], cost: 5 [test] deduced pseudo-invariant 1+x7_1+x28_1<=0, also trying -1-x7_1-x28_1<=-1 Accelerated rule 14 with non-termination, yielding the new rule 15. Accelerated rule 14 with non-termination, yielding the new rule 16. Accelerated rule 14 with backward acceleration, yielding the new rule 17. Accelerated rule 14 with backward acceleration, yielding the new rule 18. [accelerate] Nesting with 1 inner and 1 outer candidates Also removing duplicate rules: 16. Accelerated all simple loops using metering functions (where possible): Start location: __init 14: f3 -> f3 : arg1'=-x7_1+arg1, arg2'=1+arg2+x28_1, arg3'=1+x28_1, [ -arg2+arg1>=1 ], cost: 5 15: f3 -> [9] : [ -arg2+arg1>=1 && arg2==0 && x7_1==0 && x28_1==-1 && arg1==1 ], cost: NONTERM 17: f3 -> [9] : [ -arg2+arg1>=1 && 1+x7_1+x28_1<=0 ], cost: NONTERM 18: f3 -> f3 : arg1'=arg1-x7_1*k, arg2'=k*x28_1+arg2+k, arg3'=1+x28_1, [ -1-x7_1-x28_1<=-1 && k>=1 && 1-arg2-(-1+k)*x28_1-k+arg1-(-1+k)*x7_1>=1 ], cost: 5*k 10: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_9, [], cost: 3 Chained accelerated rules (with incoming rules): Start location: __init 10: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_9, [], cost: 3 19: __init -> f3 : arg1'=arg1P_1-x7_1, arg2'=1+arg2P_2+x28_1, arg3'=1+x28_1, [ arg1P_1-arg2P_2>=1 ], cost: 8 20: __init -> [9] : [], cost: NONTERM 21: __init -> [9] : [], cost: NONTERM 22: __init -> f3 : arg1'=arg1P_1-x7_1*k, arg2'=k*x28_1+k+arg2P_2, arg3'=1+x28_1, [ -1-x7_1-x28_1<=-1 && k>=1 && 1+arg1P_1-(-1+k)*x28_1-k-arg2P_2-(-1+k)*x7_1>=1 ], cost: 3+5*k Removed unreachable locations (and leaf rules with constant cost): Start location: __init 20: __init -> [9] : [], cost: NONTERM 21: __init -> [9] : [], cost: NONTERM 22: __init -> f3 : arg1'=arg1P_1-x7_1*k, arg2'=k*x28_1+k+arg2P_2, arg3'=1+x28_1, [ -1-x7_1-x28_1<=-1 && k>=1 && 1+arg1P_1-(-1+k)*x28_1-k-arg2P_2-(-1+k)*x7_1>=1 ], cost: 3+5*k ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 21: __init -> [9] : [], cost: NONTERM 22: __init -> f3 : arg1'=arg1P_1-x7_1*k, arg2'=k*x28_1+k+arg2P_2, arg3'=1+x28_1, [ -1-x7_1-x28_1<=-1 && k>=1 && 1+arg1P_1-(-1+k)*x28_1-k-arg2P_2-(-1+k)*x7_1>=1 ], cost: 3+5*k Computing asymptotic complexity for rule 21 Guard is satisfiable, yielding nontermination Resulting cost NONTERM has complexity: Nonterm Found new complexity Nonterm. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Nonterm Cpx degree: Nonterm Solved cost: NONTERM Rule cost: NONTERM Rule guard: [] NO