NO ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2==arg2P_1 ], cost: 1 2: f2 -> f3 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg1<1 && arg1<0 && arg1==arg1P_3 && arg2==arg2P_3 ], cost: 1 3: f2 -> f3 : arg1'=arg1P_4, arg2'=arg2P_4, [ arg1<1 && arg1>0 && arg1==arg1P_4 && arg2==arg2P_4 ], cost: 1 4: f2 -> f3 : arg1'=arg1P_5, arg2'=arg2P_5, [ arg1>1 && arg1<0 && arg1==arg1P_5 && arg2==arg2P_5 ], cost: 1 5: f2 -> f3 : arg1'=arg1P_6, arg2'=arg2P_6, [ arg1>1 && arg1>0 && arg1==arg1P_6 && arg2==arg2P_6 ], cost: 1 7: f2 -> f5 : arg1'=arg1P_8, arg2'=arg2P_8, [ arg1==1 && arg1==arg1P_8 && arg2==arg2P_8 ], cost: 1 8: f2 -> f5 : arg1'=arg1P_9, arg2'=arg2P_9, [ arg1==0 && arg1==arg1P_9 && arg2==arg2P_9 ], cost: 1 1: f3 -> f4 : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1P_2==-2+arg1 && arg2==arg2P_2 ], cost: 1 6: f4 -> f2 : arg1'=arg1P_7, arg2'=arg2P_7, [ arg1==arg1P_7 && arg2==arg2P_7 ], cost: 1 9: __init -> f1 : arg1'=arg1P_10, arg2'=arg2P_10, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 9: __init -> f1 : arg1'=arg1P_10, arg2'=arg2P_10, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2==arg2P_1 ], cost: 1 2: f2 -> f3 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg1<1 && arg1<0 && arg1==arg1P_3 && arg2==arg2P_3 ], cost: 1 3: f2 -> f3 : arg1'=arg1P_4, arg2'=arg2P_4, [ arg1<1 && arg1>0 && arg1==arg1P_4 && arg2==arg2P_4 ], cost: 1 4: f2 -> f3 : arg1'=arg1P_5, arg2'=arg2P_5, [ arg1>1 && arg1<0 && arg1==arg1P_5 && arg2==arg2P_5 ], cost: 1 5: f2 -> f3 : arg1'=arg1P_6, arg2'=arg2P_6, [ arg1>1 && arg1>0 && arg1==arg1P_6 && arg2==arg2P_6 ], cost: 1 1: f3 -> f4 : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1P_2==-2+arg1 && arg2==arg2P_2 ], cost: 1 6: f4 -> f2 : arg1'=arg1P_7, arg2'=arg2P_7, [ arg1==arg1P_7 && arg2==arg2P_7 ], cost: 1 9: __init -> f1 : arg1'=arg1P_10, arg2'=arg2P_10, [], cost: 1 Removed rules with unsatisfiable guard: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2==arg2P_1 ], cost: 1 2: f2 -> f3 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg1<1 && arg1<0 && arg1==arg1P_3 && arg2==arg2P_3 ], cost: 1 5: f2 -> f3 : arg1'=arg1P_6, arg2'=arg2P_6, [ arg1>1 && arg1>0 && arg1==arg1P_6 && arg2==arg2P_6 ], cost: 1 1: f3 -> f4 : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1P_2==-2+arg1 && arg2==arg2P_2 ], cost: 1 6: f4 -> f2 : arg1'=arg1P_7, arg2'=arg2P_7, [ arg1==arg1P_7 && arg2==arg2P_7 ], cost: 1 9: __init -> f1 : arg1'=arg1P_10, arg2'=arg2P_10, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, [], cost: 1 2: f2 -> f3 : [ arg1<0 ], cost: 1 5: f2 -> f3 : [ arg1>1 ], cost: 1 1: f3 -> f4 : arg1'=-2+arg1, [], cost: 1 6: f4 -> f2 : [], cost: 1 9: __init -> f1 : arg1'=arg1P_10, arg2'=arg2P_10, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 2: f2 -> f3 : [ arg1<0 ], cost: 1 5: f2 -> f3 : [ arg1>1 ], cost: 1 11: f3 -> f2 : arg1'=-2+arg1, [], cost: 2 10: __init -> f2 : arg1'=arg1P_1, arg2'=arg2P_10, [], cost: 2 Eliminated locations (on tree-shaped paths): Start location: __init 12: f2 -> f2 : arg1'=-2+arg1, [ arg1<0 ], cost: 3 13: f2 -> f2 : arg1'=-2+arg1, [ arg1>1 ], cost: 3 10: __init -> f2 : arg1'=arg1P_1, arg2'=arg2P_10, [], cost: 2 Accelerating simple loops of location 1. Accelerating the following rules: 12: f2 -> f2 : arg1'=-2+arg1, [ arg1<0 ], cost: 3 13: f2 -> f2 : arg1'=-2+arg1, [ arg1>1 ], cost: 3 Accelerated rule 12 with non-termination, yielding the new rule 14. Accelerated rule 13 with backward acceleration, yielding the new rule 15. [accelerate] Nesting with 1 inner and 1 outer candidates Removing the simple loops: 12 13. Accelerated all simple loops using metering functions (where possible): Start location: __init 14: f2 -> [6] : [ arg1<0 ], cost: NONTERM 15: f2 -> f2 : arg1'=-2*k+arg1, [ k>=0 && 2-2*k+arg1>1 ], cost: 3*k 10: __init -> f2 : arg1'=arg1P_1, arg2'=arg2P_10, [], cost: 2 Chained accelerated rules (with incoming rules): Start location: __init 10: __init -> f2 : arg1'=arg1P_1, arg2'=arg2P_10, [], cost: 2 16: __init -> [6] : [], cost: NONTERM 17: __init -> f2 : arg1'=arg1P_1-2*k, arg2'=arg2P_10, [ k>=0 && 2+arg1P_1-2*k>1 ], cost: 2+3*k Removed unreachable locations (and leaf rules with constant cost): Start location: __init 16: __init -> [6] : [], cost: NONTERM 17: __init -> f2 : arg1'=arg1P_1-2*k, arg2'=arg2P_10, [ k>=0 && 2+arg1P_1-2*k>1 ], cost: 2+3*k ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 16: __init -> [6] : [], cost: NONTERM 17: __init -> f2 : arg1'=arg1P_1-2*k, arg2'=arg2P_10, [ k>=0 && 2+arg1P_1-2*k>1 ], cost: 2+3*k Computing asymptotic complexity for rule 16 Guard is satisfiable, yielding nontermination Resulting cost NONTERM has complexity: Nonterm Found new complexity Nonterm. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Nonterm Cpx degree: Nonterm Solved cost: NONTERM Rule cost: NONTERM Rule guard: [] NO