WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2==arg2P_1 ], cost: 1 3: f2 -> f3 : arg1'=arg1P_4, arg2'=arg2P_4, [ arg1>0 && 2*arg1<=arg2 && arg1==arg1P_4 && arg2==arg2P_4 ], cost: 1 5: f2 -> f6 : arg1'=arg1P_6, arg2'=arg2P_6, [ arg1<=0 && arg1==arg1P_6 && arg2==arg2P_6 ], cost: 1 6: f2 -> f6 : arg1'=arg1P_7, arg2'=arg2P_7, [ 2*arg1>arg2 && arg1==arg1P_7 && arg2==arg2P_7 ], cost: 1 1: f3 -> f4 : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1==arg1P_2 && arg1==arg2P_2 ], cost: 1 2: f4 -> f5 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg2==arg2P_3 ], cost: 1 4: f5 -> f2 : arg1'=arg1P_5, arg2'=arg2P_5, [ arg1==arg1P_5 && arg2==arg2P_5 ], cost: 1 7: __init -> f1 : arg1'=arg1P_8, arg2'=arg2P_8, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 7: __init -> f1 : arg1'=arg1P_8, arg2'=arg2P_8, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2==arg2P_1 ], cost: 1 3: f2 -> f3 : arg1'=arg1P_4, arg2'=arg2P_4, [ arg1>0 && 2*arg1<=arg2 && arg1==arg1P_4 && arg2==arg2P_4 ], cost: 1 1: f3 -> f4 : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1==arg1P_2 && arg1==arg2P_2 ], cost: 1 2: f4 -> f5 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg2==arg2P_3 ], cost: 1 4: f5 -> f2 : arg1'=arg1P_5, arg2'=arg2P_5, [ arg1==arg1P_5 && arg2==arg2P_5 ], cost: 1 7: __init -> f1 : arg1'=arg1P_8, arg2'=arg2P_8, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, [], cost: 1 3: f2 -> f3 : [ arg1>0 && 2*arg1<=arg2 ], cost: 1 1: f3 -> f4 : arg2'=arg1, [], cost: 1 2: f4 -> f5 : arg1'=arg1P_3, [], cost: 1 4: f5 -> f2 : [], cost: 1 7: __init -> f1 : arg1'=arg1P_8, arg2'=arg2P_8, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 11: f2 -> f2 : arg1'=arg1P_3, arg2'=arg1, [ arg1>0 && 2*arg1<=arg2 ], cost: 4 8: __init -> f2 : arg1'=arg1P_1, arg2'=arg2P_8, [], cost: 2 Accelerating simple loops of location 1. Accelerating the following rules: 11: f2 -> f2 : arg1'=arg1P_3, arg2'=arg1, [ arg1>0 && 2*arg1<=arg2 ], cost: 4 [test] deduced pseudo-invariant -1+2*arg1P_3<=0, also trying 1-2*arg1P_3<=-1 [test] deduced pseudo-invariant -arg2-4*arg1P_3+4*arg1<=0, also trying arg2+4*arg1P_3-4*arg1<=-1 Accelerated rule 11 with backward acceleration, yielding the new rule 12. [accelerate] Nesting with 1 inner and 1 outer candidates Accelerated all simple loops using metering functions (where possible): Start location: __init 11: f2 -> f2 : arg1'=arg1P_3, arg2'=arg1, [ arg1>0 && 2*arg1<=arg2 ], cost: 4 12: f2 -> f2 : arg1'=arg1P_3, arg2'=arg1P_3, [ arg1>0 && 1-2*arg1P_3<=-1 && -arg2-4*arg1P_3+4*arg1<=0 && k>=1 && 2*arg1P_3<=arg1P_3 ], cost: 4*k 8: __init -> f2 : arg1'=arg1P_1, arg2'=arg2P_8, [], cost: 2 Chained accelerated rules (with incoming rules): Start location: __init 8: __init -> f2 : arg1'=arg1P_1, arg2'=arg2P_8, [], cost: 2 13: __init -> f2 : arg1'=arg1P_3, arg2'=arg1P_1, [ arg1P_1>0 ], cost: 6 Removed unreachable locations (and leaf rules with constant cost): Start location: __init ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [] WORST_CASE(Omega(1),?)