NO ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2==arg2P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1==arg1P_2 ], cost: 1 4: f3 -> f4 : arg1'=arg1P_5, arg2'=arg2P_5, [ arg1 f7 : arg1'=arg1P_7, arg2'=arg2P_7, [ arg1>=arg2 && arg1==arg1P_7 && arg2==arg2P_7 ], cost: 1 2: f4 -> f5 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg1P_3==arg2+arg1 && arg2==arg2P_3 ], cost: 1 3: f5 -> f6 : arg1'=arg1P_4, arg2'=arg2P_4, [ arg2P_4==-2*arg2 && arg1==arg1P_4 ], cost: 1 5: f6 -> f3 : arg1'=arg1P_6, arg2'=arg2P_6, [ arg1==arg1P_6 && arg2==arg2P_6 ], cost: 1 7: __init -> f1 : arg1'=arg1P_8, arg2'=arg2P_8, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 7: __init -> f1 : arg1'=arg1P_8, arg2'=arg2P_8, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2==arg2P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1==arg1P_2 ], cost: 1 4: f3 -> f4 : arg1'=arg1P_5, arg2'=arg2P_5, [ arg1 f5 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg1P_3==arg2+arg1 && arg2==arg2P_3 ], cost: 1 3: f5 -> f6 : arg1'=arg1P_4, arg2'=arg2P_4, [ arg2P_4==-2*arg2 && arg1==arg1P_4 ], cost: 1 5: f6 -> f3 : arg1'=arg1P_6, arg2'=arg2P_6, [ arg1==arg1P_6 && arg2==arg2P_6 ], cost: 1 7: __init -> f1 : arg1'=arg1P_8, arg2'=arg2P_8, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, [], cost: 1 1: f2 -> f3 : arg2'=arg2P_2, [], cost: 1 4: f3 -> f4 : [ arg1 f5 : arg1'=arg2+arg1, [], cost: 1 3: f5 -> f6 : arg2'=-2*arg2, [], cost: 1 5: f6 -> f3 : [], cost: 1 7: __init -> f1 : arg1'=arg1P_8, arg2'=arg2P_8, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 12: f3 -> f3 : arg1'=arg2+arg1, arg2'=-2*arg2, [ arg1 f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 Accelerating simple loops of location 2. Accelerating the following rules: 12: f3 -> f3 : arg1'=arg2+arg1, arg2'=-2*arg2, [ arg1 [8] : [ arg1 f3 : arg1'=1/3*arg2-1/3*4^k*arg2+arg1, arg2'=4^k*arg2, [ k>=0 && 1/3*arg2-1/3*arg2*4^(-1+k)+arg1 f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 Chained accelerated rules (with incoming rules): Start location: __init 9: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, [], cost: 3 15: __init -> [8] : [], cost: NONTERM 16: __init -> f3 : arg1'=1/3*arg2P_2+arg1P_1-1/3*4^k*arg2P_2, arg2'=4^k*arg2P_2, [ k>=0 && 1/3*arg2P_2+arg1P_1-1/3*arg2P_2*4^(-1+k) [8] : [], cost: NONTERM 16: __init -> f3 : arg1'=1/3*arg2P_2+arg1P_1-1/3*4^k*arg2P_2, arg2'=4^k*arg2P_2, [ k>=0 && 1/3*arg2P_2+arg1P_1-1/3*arg2P_2*4^(-1+k) [8] : [], cost: NONTERM 16: __init -> f3 : arg1'=1/3*arg2P_2+arg1P_1-1/3*4^k*arg2P_2, arg2'=4^k*arg2P_2, [ k>=0 && 1/3*arg2P_2+arg1P_1-1/3*arg2P_2*4^(-1+k)