WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg1==arg1P_1 && arg3==arg3P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg1==arg1P_2 && arg2==arg2P_2 ], cost: 1 2: f3 -> f4 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ 0==arg1P_3 && arg2==arg2P_3 && arg3==arg3P_3 ], cost: 1 5: f4 -> f5 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [ arg2>1 && arg2 f8 : arg1'=arg1P_8, arg2'=arg2P_8, arg3'=arg3P_8, [ arg2<=1 && arg1==arg1P_8 && arg2==arg2P_8 && arg3==arg3P_8 ], cost: 1 8: f4 -> f8 : arg1'=arg1P_9, arg2'=arg2P_9, arg3'=arg3P_9, [ arg2>=arg3 && arg1==arg1P_9 && arg2==arg2P_9 && arg3==arg3P_9 ], cost: 1 3: f5 -> f6 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg2P_4==arg2^2 && arg1==arg1P_4 && arg3==arg3P_4 ], cost: 1 4: f6 -> f7 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ arg1P_5==1+arg1 && arg2==arg2P_5 && arg3==arg3P_5 ], cost: 1 6: f7 -> f4 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, [ arg1==arg1P_7 && arg2==arg2P_7 && arg3==arg3P_7 ], cost: 1 9: __init -> f1 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 9: __init -> f1 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg1==arg1P_1 && arg3==arg3P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg1==arg1P_2 && arg2==arg2P_2 ], cost: 1 2: f3 -> f4 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ 0==arg1P_3 && arg2==arg2P_3 && arg3==arg3P_3 ], cost: 1 5: f4 -> f5 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [ arg2>1 && arg2 f6 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg2P_4==arg2^2 && arg1==arg1P_4 && arg3==arg3P_4 ], cost: 1 4: f6 -> f7 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ arg1P_5==1+arg1 && arg2==arg2P_5 && arg3==arg3P_5 ], cost: 1 6: f7 -> f4 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, [ arg1==arg1P_7 && arg2==arg2P_7 && arg3==arg3P_7 ], cost: 1 9: __init -> f1 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg2'=arg2P_1, [], cost: 1 1: f2 -> f3 : arg3'=arg3P_2, [], cost: 1 2: f3 -> f4 : arg1'=0, [], cost: 1 5: f4 -> f5 : [ arg2>1 && arg2 f6 : arg2'=arg2^2, [], cost: 1 4: f6 -> f7 : arg1'=1+arg1, [], cost: 1 6: f7 -> f4 : [], cost: 1 9: __init -> f1 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 15: f4 -> f4 : arg1'=1+arg1, arg2'=arg2^2, [ arg2>1 && arg2 f4 : arg1'=0, arg2'=arg2P_1, arg3'=arg3P_2, [], cost: 4 Accelerating simple loops of location 3. Accelerating the following rules: 15: f4 -> f4 : arg1'=1+arg1, arg2'=arg2^2, [ arg2>1 && arg2 f4 : arg1'=k+arg1, arg2'=arg2^(2^k), [ arg2>1 && k>=0 && arg2^(2^(-1+k)) f4 : arg1'=0, arg2'=arg2P_1, arg3'=arg3P_2, [], cost: 4 Chained accelerated rules (with incoming rules): Start location: __init 12: __init -> f4 : arg1'=0, arg2'=arg2P_1, arg3'=arg3P_2, [], cost: 4 17: __init -> f4 : arg1'=k, arg2'=arg2P_1^(2^k), arg3'=arg3P_2, [ arg2P_1>1 && k>=0 && arg2P_1^(2^(-1+k)) f4 : arg1'=k, arg2'=arg2P_1^(2^k), arg3'=arg3P_2, [ arg2P_1>1 && k>=0 && arg2P_1^(2^(-1+k)) f4 : arg1'=k, arg2'=arg2P_1^(2^k), arg3'=arg3P_2, [ arg2P_1>1 && k>=0 && arg2P_1^(2^(-1+k))