WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg2==arg2P_1 && arg3==arg3P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg1==arg1P_2 && arg3==arg3P_2 ], cost: 1 2: f3 -> f4 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ arg1==arg1P_3 && arg2==arg2P_3 ], cost: 1 12: f4 -> f5 : arg1'=arg1P_13, arg2'=arg2P_13, arg3'=arg3P_13, [ arg1>=0 && arg1==arg1P_13 && arg2==arg2P_13 && arg3==arg3P_13 ], cost: 1 14: f4 -> f13 : arg1'=arg1P_15, arg2'=arg2P_15, arg3'=arg3P_15, [ arg1<0 && arg1==arg1P_15 && arg2==arg2P_15 && arg3==arg3P_15 ], cost: 1 3: f6 -> f9 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg1P_4==arg2+arg1 && arg2==arg2P_4 && arg3==arg3P_4 ], cost: 1 8: f9 -> f8 : arg1'=arg1P_9, arg2'=arg2P_9, arg3'=arg3P_9, [ arg1==arg1P_9 && arg2==arg2P_9 && arg3==arg3P_9 ], cost: 1 4: f7 -> f10 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ arg1P_5==arg3+arg1 && arg2==arg2P_5 && arg3==arg3P_5 ], cost: 1 9: f10 -> f8 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [ arg1==arg1P_10 && arg2==arg2P_10 && arg3==arg3P_10 ], cost: 1 5: f5 -> f6 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [ x18_1<0 && arg1==arg1P_6 && arg2==arg2P_6 && arg3==arg3P_6 ], cost: 1 6: f5 -> f6 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, [ x51_1>0 && arg1==arg1P_7 && arg2==arg2P_7 && arg3==arg3P_7 ], cost: 1 7: f5 -> f7 : arg1'=arg1P_8, arg2'=arg2P_8, arg3'=arg3P_8, [ x22_1==0 && arg1==arg1P_8 && arg2==arg2P_8 && arg3==arg3P_8 ], cost: 1 10: f8 -> f11 : arg1'=arg1P_11, arg2'=arg2P_11, arg3'=arg3P_11, [ arg2P_11==arg2+arg3 && arg1==arg1P_11 && arg3==arg3P_11 ], cost: 1 11: f11 -> f12 : arg1'=arg1P_12, arg2'=arg2P_12, arg3'=arg3P_12, [ arg3P_12==-1+arg3 && arg1==arg1P_12 && arg2==arg2P_12 ], cost: 1 13: f12 -> f4 : arg1'=arg1P_14, arg2'=arg2P_14, arg3'=arg3P_14, [ arg1==arg1P_14 && arg2==arg2P_14 && arg3==arg3P_14 ], cost: 1 15: __init -> f1 : arg1'=arg1P_16, arg2'=arg2P_16, arg3'=arg3P_16, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 15: __init -> f1 : arg1'=arg1P_16, arg2'=arg2P_16, arg3'=arg3P_16, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg2==arg2P_1 && arg3==arg3P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg1==arg1P_2 && arg3==arg3P_2 ], cost: 1 2: f3 -> f4 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ arg1==arg1P_3 && arg2==arg2P_3 ], cost: 1 12: f4 -> f5 : arg1'=arg1P_13, arg2'=arg2P_13, arg3'=arg3P_13, [ arg1>=0 && arg1==arg1P_13 && arg2==arg2P_13 && arg3==arg3P_13 ], cost: 1 3: f6 -> f9 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg1P_4==arg2+arg1 && arg2==arg2P_4 && arg3==arg3P_4 ], cost: 1 8: f9 -> f8 : arg1'=arg1P_9, arg2'=arg2P_9, arg3'=arg3P_9, [ arg1==arg1P_9 && arg2==arg2P_9 && arg3==arg3P_9 ], cost: 1 4: f7 -> f10 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ arg1P_5==arg3+arg1 && arg2==arg2P_5 && arg3==arg3P_5 ], cost: 1 9: f10 -> f8 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [ arg1==arg1P_10 && arg2==arg2P_10 && arg3==arg3P_10 ], cost: 1 5: f5 -> f6 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [ x18_1<0 && arg1==arg1P_6 && arg2==arg2P_6 && arg3==arg3P_6 ], cost: 1 6: f5 -> f6 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, [ x51_1>0 && arg1==arg1P_7 && arg2==arg2P_7 && arg3==arg3P_7 ], cost: 1 7: f5 -> f7 : arg1'=arg1P_8, arg2'=arg2P_8, arg3'=arg3P_8, [ x22_1==0 && arg1==arg1P_8 && arg2==arg2P_8 && arg3==arg3P_8 ], cost: 1 10: f8 -> f11 : arg1'=arg1P_11, arg2'=arg2P_11, arg3'=arg3P_11, [ arg2P_11==arg2+arg3 && arg1==arg1P_11 && arg3==arg3P_11 ], cost: 1 11: f11 -> f12 : arg1'=arg1P_12, arg2'=arg2P_12, arg3'=arg3P_12, [ arg3P_12==-1+arg3 && arg1==arg1P_12 && arg2==arg2P_12 ], cost: 1 13: f12 -> f4 : arg1'=arg1P_14, arg2'=arg2P_14, arg3'=arg3P_14, [ arg1==arg1P_14 && arg2==arg2P_14 && arg3==arg3P_14 ], cost: 1 15: __init -> f1 : arg1'=arg1P_16, arg2'=arg2P_16, arg3'=arg3P_16, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, [], cost: 1 1: f2 -> f3 : arg2'=arg2P_2, [], cost: 1 2: f3 -> f4 : arg3'=arg3P_3, [], cost: 1 12: f4 -> f5 : [ arg1>=0 ], cost: 1 3: f6 -> f9 : arg1'=arg2+arg1, [], cost: 1 8: f9 -> f8 : [], cost: 1 4: f7 -> f10 : arg1'=arg3+arg1, [], cost: 1 9: f10 -> f8 : [], cost: 1 6: f5 -> f6 : [], cost: 1 7: f5 -> f7 : [], cost: 1 10: f8 -> f11 : arg2'=arg2+arg3, [], cost: 1 11: f11 -> f12 : arg3'=-1+arg3, [], cost: 1 13: f12 -> f4 : [], cost: 1 15: __init -> f1 : arg1'=arg1P_16, arg2'=arg2P_16, arg3'=arg3P_16, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 12: f4 -> f5 : [ arg1>=0 ], cost: 1 21: f5 -> f8 : arg1'=arg2+arg1, [], cost: 3 22: f5 -> f8 : arg1'=arg3+arg1, [], cost: 3 24: f8 -> f4 : arg2'=arg2+arg3, arg3'=-1+arg3, [], cost: 3 18: __init -> f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 Eliminated locations (on tree-shaped paths): Start location: __init 25: f4 -> f8 : arg1'=arg2+arg1, [ arg1>=0 ], cost: 4 26: f4 -> f8 : arg1'=arg3+arg1, [ arg1>=0 ], cost: 4 24: f8 -> f4 : arg2'=arg2+arg3, arg3'=-1+arg3, [], cost: 3 18: __init -> f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 Eliminated locations (on tree-shaped paths): Start location: __init 27: f4 -> f4 : arg1'=arg2+arg1, arg2'=arg2+arg3, arg3'=-1+arg3, [ arg1>=0 ], cost: 7 28: f4 -> f4 : arg1'=arg3+arg1, arg2'=arg2+arg3, arg3'=-1+arg3, [ arg1>=0 ], cost: 7 18: __init -> f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 Accelerating simple loops of location 3. Accelerating the following rules: 27: f4 -> f4 : arg1'=arg2+arg1, arg2'=arg2+arg3, arg3'=-1+arg3, [ arg1>=0 ], cost: 7 28: f4 -> f4 : arg1'=arg3+arg1, arg2'=arg2+arg3, arg3'=-1+arg3, [ arg1>=0 ], cost: 7 Failed to prove monotonicity of the guard of rule 27. [test] deduced pseudo-invariant 1+arg3<=0, also trying -1-arg3<=-1 Accelerated rule 28 with backward acceleration, yielding the new rule 29. Accelerated rule 28 with backward acceleration, yielding the new rule 30. [accelerate] Nesting with 3 inner and 2 outer candidates Accelerated all simple loops using metering functions (where possible): Start location: __init 27: f4 -> f4 : arg1'=arg2+arg1, arg2'=arg2+arg3, arg3'=-1+arg3, [ arg1>=0 ], cost: 7 28: f4 -> f4 : arg1'=arg3+arg1, arg2'=arg2+arg3, arg3'=-1+arg3, [ arg1>=0 ], cost: 7 29: f4 -> f4 : arg1'=-1/2*k^2+1/2*k+arg3*k+arg1, arg2'=arg2-1/2*k^2+1/2*k+arg3*k, arg3'=arg3-k, [ 1+arg3<=0 && k>=0 && -1/2+1/2*k+(-1+k)*arg3-1/2*(-1+k)^2+arg1>=0 ], cost: 7*k 30: f4 -> f4 : arg1'=1/2-1/2*(1+arg3)^2+1/2*arg3+arg3*(1+arg3)+arg1, arg2'=1/2+arg2-1/2*(1+arg3)^2+1/2*arg3+arg3*(1+arg3), arg3'=-1, [ arg1>=0 && 1+arg3>=0 ], cost: 7+7*arg3 18: __init -> f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 Chained accelerated rules (with incoming rules): Start location: __init 18: __init -> f4 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_3, [], cost: 4 31: __init -> f4 : arg1'=arg1P_1+arg2P_2, arg2'=arg2P_2+arg3P_3, arg3'=-1+arg3P_3, [ arg1P_1>=0 ], cost: 11 32: __init -> f4 : arg1'=arg1P_1+arg3P_3, arg2'=arg2P_2+arg3P_3, arg3'=-1+arg3P_3, [ arg1P_1>=0 ], cost: 11 33: __init -> f4 : arg1'=-1/2*k^2+arg1P_1+k*arg3P_3+1/2*k, arg2'=-1/2*k^2+k*arg3P_3+1/2*k+arg2P_2, arg3'=-k+arg3P_3, [ 1+arg3P_3<=0 && k>=0 && -1/2+arg1P_1+(-1+k)*arg3P_3+1/2*k-1/2*(-1+k)^2>=0 ], cost: 4+7*k 34: __init -> f4 : arg1'=1/2+arg1P_1+(1+arg3P_3)*arg3P_3-1/2*(1+arg3P_3)^2+1/2*arg3P_3, arg2'=1/2+arg2P_2+(1+arg3P_3)*arg3P_3-1/2*(1+arg3P_3)^2+1/2*arg3P_3, arg3'=-1, [ arg1P_1>=0 && 1+arg3P_3>=0 ], cost: 11+7*arg3P_3 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 33: __init -> f4 : arg1'=-1/2*k^2+arg1P_1+k*arg3P_3+1/2*k, arg2'=-1/2*k^2+k*arg3P_3+1/2*k+arg2P_2, arg3'=-k+arg3P_3, [ 1+arg3P_3<=0 && k>=0 && -1/2+arg1P_1+(-1+k)*arg3P_3+1/2*k-1/2*(-1+k)^2>=0 ], cost: 4+7*k 34: __init -> f4 : arg1'=1/2+arg1P_1+(1+arg3P_3)*arg3P_3-1/2*(1+arg3P_3)^2+1/2*arg3P_3, arg2'=1/2+arg2P_2+(1+arg3P_3)*arg3P_3-1/2*(1+arg3P_3)^2+1/2*arg3P_3, arg3'=-1, [ arg1P_1>=0 && 1+arg3P_3>=0 ], cost: 11+7*arg3P_3 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 33: __init -> f4 : arg1'=-1/2*k^2+arg1P_1+k*arg3P_3+1/2*k, arg2'=-1/2*k^2+k*arg3P_3+1/2*k+arg2P_2, arg3'=-k+arg3P_3, [ 1+arg3P_3<=0 && k>=0 && -1/2+arg1P_1+(-1+k)*arg3P_3+1/2*k-1/2*(-1+k)^2>=0 ], cost: 4+7*k 34: __init -> f4 : arg1'=1/2+arg1P_1+(1+arg3P_3)*arg3P_3-1/2*(1+arg3P_3)^2+1/2*arg3P_3, arg2'=1/2+arg2P_2+(1+arg3P_3)*arg3P_3-1/2*(1+arg3P_3)^2+1/2*arg3P_3, arg3'=-1, [ arg1P_1>=0 && 1+arg3P_3>=0 ], cost: 11+7*arg3P_3 Computing asymptotic complexity for rule 34 Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 33 Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [] WORST_CASE(Omega(1),?)