WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1_0_main_Load -> f252_0_min_GE : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg1P_1>-1 && arg2>-1 && arg3P_1>-1 && arg1>0 && -1+arg1P_1==arg2P_1 ], cost: 1 1: f252_0_min_GE -> f261_0_main_NE : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg3>arg2 && arg1==arg1P_2 && arg2==arg2P_2 && arg3==arg3P_2 ], cost: 1 2: f252_0_min_GE -> f261_0_main_NE : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ arg3<=arg2 && arg1==arg1P_3 && arg3==arg2P_3 && arg3==arg3P_3 ], cost: 1 3: f261_0_main_NE -> f252_0_min_GE : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg1>-1 && arg2==arg3 && arg1==arg1P_4 && -1+arg1==arg2P_4 && 1+arg2==arg3P_4 ], cost: 1 4: __init -> f1_0_main_Load : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 4: __init -> f1_0_main_Load : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1_0_main_Load -> f252_0_min_GE : arg1'=1+arg2P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ 1+arg2P_1>-1 && arg2>-1 && arg3P_1>-1 && arg1>0 ], cost: 1 1: f252_0_min_GE -> f261_0_main_NE : [ arg3>arg2 ], cost: 1 2: f252_0_min_GE -> f261_0_main_NE : arg2'=arg3, [ arg3<=arg2 ], cost: 1 3: f261_0_main_NE -> f252_0_min_GE : arg2'=-1+arg1, arg3'=1+arg2, [ arg1>-1 && arg2==arg3 ], cost: 1 4: __init -> f1_0_main_Load : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 1: f252_0_min_GE -> f261_0_main_NE : [ arg3>arg2 ], cost: 1 2: f252_0_min_GE -> f261_0_main_NE : arg2'=arg3, [ arg3<=arg2 ], cost: 1 3: f261_0_main_NE -> f252_0_min_GE : arg2'=-1+arg1, arg3'=1+arg2, [ arg1>-1 && arg2==arg3 ], cost: 1 5: __init -> f252_0_min_GE : arg1'=1+arg2P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ 1+arg2P_1>-1 && arg2P_5>-1 && arg3P_1>-1 && arg1P_5>0 ], cost: 2 Eliminated locations (on tree-shaped paths): Start location: __init 6: f252_0_min_GE -> f252_0_min_GE : arg2'=-1+arg1, arg3'=1+arg3, [ arg3<=arg2 && arg1>-1 ], cost: 2 5: __init -> f252_0_min_GE : arg1'=1+arg2P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ 1+arg2P_1>-1 && arg2P_5>-1 && arg3P_1>-1 && arg1P_5>0 ], cost: 2 Accelerating simple loops of location 1. Accelerating the following rules: 6: f252_0_min_GE -> f252_0_min_GE : arg2'=-1+arg1, arg3'=1+arg3, [ arg3<=arg2 && arg1>-1 ], cost: 2 [test] deduced invariant -1-arg2+arg1<=0 Accelerated rule 6 with backward acceleration, yielding the new rule 7. [accelerate] Nesting with 1 inner and 1 outer candidates Accelerated all simple loops using metering functions (where possible): Start location: __init 6: f252_0_min_GE -> f252_0_min_GE : arg2'=-1+arg1, arg3'=1+arg3, [ arg3<=arg2 && arg1>-1 ], cost: 2 7: f252_0_min_GE -> f252_0_min_GE : arg2'=-1+arg1, arg3'=arg1, [ arg1>-1 && -1-arg2+arg1<=0 && -arg3+arg1>=1 ], cost: -2*arg3+2*arg1 5: __init -> f252_0_min_GE : arg1'=1+arg2P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ 1+arg2P_1>-1 && arg2P_5>-1 && arg3P_1>-1 && arg1P_5>0 ], cost: 2 Chained accelerated rules (with incoming rules): Start location: __init 5: __init -> f252_0_min_GE : arg1'=1+arg2P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ 1+arg2P_1>-1 && arg2P_5>-1 && arg3P_1>-1 && arg1P_5>0 ], cost: 2 8: __init -> f252_0_min_GE : arg1'=1+arg2P_1, arg2'=arg2P_1, arg3'=1+arg3P_1, [ 1+arg2P_1>-1 && arg3P_1>-1 && arg3P_1<=arg2P_1 ], cost: 4 9: __init -> f252_0_min_GE : arg1'=1+arg2P_1, arg2'=arg2P_1, arg3'=1+arg2P_1, [ 1+arg2P_1>-1 && arg3P_1>-1 && 1-arg3P_1+arg2P_1>=1 ], cost: 4-2*arg3P_1+2*arg2P_1 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 9: __init -> f252_0_min_GE : arg1'=1+arg2P_1, arg2'=arg2P_1, arg3'=1+arg2P_1, [ 1+arg2P_1>-1 && arg3P_1>-1 && 1-arg3P_1+arg2P_1>=1 ], cost: 4-2*arg3P_1+2*arg2P_1 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 9: __init -> f252_0_min_GE : arg1'=1+arg2P_1, arg2'=arg2P_1, arg3'=1+arg2P_1, [ 1+arg2P_1>-1 && arg3P_1>-1 && 1-arg3P_1+arg2P_1>=1 ], cost: 4-2*arg3P_1+2*arg2P_1 Computing asymptotic complexity for rule 9 Simplified the guard: 9: __init -> f252_0_min_GE : arg1'=1+arg2P_1, arg2'=arg2P_1, arg3'=1+arg2P_1, [ arg3P_1>-1 && 1-arg3P_1+arg2P_1>=1 ], cost: 4-2*arg3P_1+2*arg2P_1 Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [] WORST_CASE(Omega(1),?)