WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1_0_main_Load -> f226_0_log_LE : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2>-1 && arg1P_1>-1 && arg1>0 ], cost: 1 1: f226_0_log_LE -> f286_0_half_LE : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1>1 && 0==arg1P_2 && arg1==arg2P_2 ], cost: 1 2: f286_0_half_LE -> f226_0_log_LE : arg1'=arg1P_3, arg2'=arg2P_3, [ arg2<2 && arg1==arg1P_3 ], cost: 1 3: f286_0_half_LE -> f286_0_half_LE : arg1'=arg1P_4, arg2'=arg2P_4, [ arg2>1 && 1+arg1==arg1P_4 && -2+arg2==arg2P_4 ], cost: 1 4: __init -> f1_0_main_Load : arg1'=arg1P_5, arg2'=arg2P_5, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 4: __init -> f1_0_main_Load : arg1'=arg1P_5, arg2'=arg2P_5, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1_0_main_Load -> f226_0_log_LE : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2>-1 && arg1P_1>-1 && arg1>0 ], cost: 1 1: f226_0_log_LE -> f286_0_half_LE : arg1'=0, arg2'=arg1, [ arg1>1 ], cost: 1 2: f286_0_half_LE -> f226_0_log_LE : arg2'=arg2P_3, [ arg2<2 ], cost: 1 3: f286_0_half_LE -> f286_0_half_LE : arg1'=1+arg1, arg2'=-2+arg2, [ arg2>1 ], cost: 1 4: __init -> f1_0_main_Load : arg1'=arg1P_5, arg2'=arg2P_5, [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 2. Accelerating the following rules: 3: f286_0_half_LE -> f286_0_half_LE : arg1'=1+arg1, arg2'=-2+arg2, [ arg2>1 ], cost: 1 Accelerated rule 3 with backward acceleration, yielding the new rule 5. [accelerate] Nesting with 1 inner and 1 outer candidates Removing the simple loops: 3. Accelerated all simple loops using metering functions (where possible): Start location: __init 0: f1_0_main_Load -> f226_0_log_LE : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2>-1 && arg1P_1>-1 && arg1>0 ], cost: 1 1: f226_0_log_LE -> f286_0_half_LE : arg1'=0, arg2'=arg1, [ arg1>1 ], cost: 1 2: f286_0_half_LE -> f226_0_log_LE : arg2'=arg2P_3, [ arg2<2 ], cost: 1 5: f286_0_half_LE -> f286_0_half_LE : arg1'=k+arg1, arg2'=arg2-2*k, [ k>=0 && 2+arg2-2*k>1 ], cost: k 4: __init -> f1_0_main_Load : arg1'=arg1P_5, arg2'=arg2P_5, [], cost: 1 Chained accelerated rules (with incoming rules): Start location: __init 0: f1_0_main_Load -> f226_0_log_LE : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2>-1 && arg1P_1>-1 && arg1>0 ], cost: 1 1: f226_0_log_LE -> f286_0_half_LE : arg1'=0, arg2'=arg1, [ arg1>1 ], cost: 1 6: f226_0_log_LE -> f286_0_half_LE : arg1'=k, arg2'=-2*k+arg1, [ arg1>1 && k>=0 && 2-2*k+arg1>1 ], cost: 1+k 2: f286_0_half_LE -> f226_0_log_LE : arg2'=arg2P_3, [ arg2<2 ], cost: 1 4: __init -> f1_0_main_Load : arg1'=arg1P_5, arg2'=arg2P_5, [], cost: 1 Eliminated locations (on linear paths): Start location: __init 1: f226_0_log_LE -> f286_0_half_LE : arg1'=0, arg2'=arg1, [ arg1>1 ], cost: 1 6: f226_0_log_LE -> f286_0_half_LE : arg1'=k, arg2'=-2*k+arg1, [ arg1>1 && k>=0 && 2-2*k+arg1>1 ], cost: 1+k 2: f286_0_half_LE -> f226_0_log_LE : arg2'=arg2P_3, [ arg2<2 ], cost: 1 7: __init -> f226_0_log_LE : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2P_5>-1 && arg1P_1>-1 && arg1P_5>0 ], cost: 2 Eliminated locations (on tree-shaped paths): Start location: __init 8: f226_0_log_LE -> f226_0_log_LE : arg1'=k, arg2'=arg2P_3, [ arg1>1 && k>=0 && 2-2*k+arg1>1 && -2*k+arg1<2 ], cost: 2+k 7: __init -> f226_0_log_LE : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2P_5>-1 && arg1P_1>-1 && arg1P_5>0 ], cost: 2 Accelerating simple loops of location 1. Accelerating the following rules: 8: f226_0_log_LE -> f226_0_log_LE : arg1'=k, arg2'=arg2P_3, [ arg1>1 && k>=0 && 2-2*k+arg1>1 && -2*k+arg1<2 ], cost: 2+k Failed to prove monotonicity of the guard of rule 8. [accelerate] Nesting with 1 inner and 1 outer candidates Accelerated all simple loops using metering functions (where possible): Start location: __init 8: f226_0_log_LE -> f226_0_log_LE : arg1'=k, arg2'=arg2P_3, [ arg1>1 && k>=0 && 2-2*k+arg1>1 && -2*k+arg1<2 ], cost: 2+k 7: __init -> f226_0_log_LE : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2P_5>-1 && arg1P_1>-1 && arg1P_5>0 ], cost: 2 Chained accelerated rules (with incoming rules): Start location: __init 7: __init -> f226_0_log_LE : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2P_5>-1 && arg1P_1>-1 && arg1P_5>0 ], cost: 2 9: __init -> f226_0_log_LE : arg1'=k, arg2'=arg2P_3, [ k>=0 && 2<=1+2*k ], cost: 4+k Removed unreachable locations (and leaf rules with constant cost): Start location: __init 9: __init -> f226_0_log_LE : arg1'=k, arg2'=arg2P_3, [ k>=0 && 2<=1+2*k ], cost: 4+k ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 9: __init -> f226_0_log_LE : arg1'=k, arg2'=arg2P_3, [ k>=0 && 2<=1+2*k ], cost: 4+k Computing asymptotic complexity for rule 9 Simplified the guard: 9: __init -> f226_0_log_LE : arg1'=k, arg2'=arg2P_3, [ 2<=1+2*k ], cost: 4+k Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [] WORST_CASE(Omega(1),?)