WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1_0_main_Load -> f172_0_log_LE : arg1'=arg1P_1, arg2'=arg2P_1, [ arg1P_1>-1 && arg2>-1 && arg1>0 && 2==arg2P_1 ], cost: 1 1: f172_0_log_LE -> f172_0_log_LE : arg1'=arg1P_2, arg2'=arg2P_2, [ arg2>1 && arg2 f1_0_main_Load : arg1'=arg1P_3, arg2'=arg2P_3, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 2: __init -> f1_0_main_Load : arg1'=arg1P_3, arg2'=arg2P_3, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1_0_main_Load -> f172_0_log_LE : arg1'=arg1P_1, arg2'=2, [ arg1P_1>-1 && arg2>-1 && arg1>0 ], cost: 1 1: f172_0_log_LE -> f172_0_log_LE : arg2'=arg2^2, [ arg2>1 && arg2 f1_0_main_Load : arg1'=arg1P_3, arg2'=arg2P_3, [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f172_0_log_LE -> f172_0_log_LE : arg2'=arg2^2, [ arg2>1 && arg2 f172_0_log_LE : arg1'=arg1P_1, arg2'=2, [ arg1P_1>-1 && arg2>-1 && arg1>0 ], cost: 1 3: f172_0_log_LE -> f172_0_log_LE : arg2'=arg2^(2^k), [ arg2>1 && k>=0 && arg2^(2^(-1+k)) f1_0_main_Load : arg1'=arg1P_3, arg2'=arg2P_3, [], cost: 1 Chained accelerated rules (with incoming rules): Start location: __init 0: f1_0_main_Load -> f172_0_log_LE : arg1'=arg1P_1, arg2'=2, [ arg1P_1>-1 && arg2>-1 && arg1>0 ], cost: 1 4: f1_0_main_Load -> f172_0_log_LE : arg1'=arg1P_1, arg2'=2^(2^k), [ arg1P_1>-1 && arg2>-1 && arg1>0 && k>=0 && 2^(2^(-1+k)) f1_0_main_Load : arg1'=arg1P_3, arg2'=arg2P_3, [], cost: 1 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 4: f1_0_main_Load -> f172_0_log_LE : arg1'=arg1P_1, arg2'=2^(2^k), [ arg1P_1>-1 && arg2>-1 && arg1>0 && k>=0 && 2^(2^(-1+k)) f1_0_main_Load : arg1'=arg1P_3, arg2'=arg2P_3, [], cost: 1 Eliminated locations (on linear paths): Start location: __init 5: __init -> f172_0_log_LE : arg1'=arg1P_1, arg2'=2^(2^k), [ arg1P_1>-1 && arg2P_3>-1 && arg1P_3>0 && k>=0 && 2^(2^(-1+k)) f172_0_log_LE : arg1'=arg1P_1, arg2'=2^(2^k), [ arg1P_1>-1 && arg2P_3>-1 && arg1P_3>0 && k>=0 && 2^(2^(-1+k))