NO ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l3 0: l0 -> l1 : __const_1000^0'=__const_1000^post_1, __const_110^0'=__const_110^post_1, __const_2000^0'=__const_2000^post_1, __const_3000^0'=__const_3000^post_1, x^0'=x^post_1, y^0'=y^post_1, [ 1+y^0<=__const_2000^0 && x^post_1==x^0+__const_1000^0 && 1+__const_110^0<=x^post_1 && __const_1000^0==__const_1000^post_1 && __const_110^0==__const_110^post_1 && __const_2000^0==__const_2000^post_1 && __const_3000^0==__const_3000^post_1 && y^0==y^post_1 ], cost: 1 1: l1 -> l0 : __const_1000^0'=__const_1000^post_2, __const_110^0'=__const_110^post_2, __const_2000^0'=__const_2000^post_2, __const_3000^0'=__const_3000^post_2, x^0'=x^post_2, y^0'=y^post_2, [ __const_1000^0==__const_1000^post_2 && __const_110^0==__const_110^post_2 && __const_2000^0==__const_2000^post_2 && __const_3000^0==__const_3000^post_2 && x^0==x^post_2 && y^0==y^post_2 ], cost: 1 2: l2 -> l0 : __const_1000^0'=__const_1000^post_3, __const_110^0'=__const_110^post_3, __const_2000^0'=__const_2000^post_3, __const_3000^0'=__const_3000^post_3, x^0'=x^post_3, y^0'=y^post_3, [ y^post_3==__const_3000^0 && __const_1000^0==__const_1000^post_3 && __const_110^0==__const_110^post_3 && __const_2000^0==__const_2000^post_3 && __const_3000^0==__const_3000^post_3 && x^0==x^post_3 ], cost: 1 3: l3 -> l2 : __const_1000^0'=__const_1000^post_4, __const_110^0'=__const_110^post_4, __const_2000^0'=__const_2000^post_4, __const_3000^0'=__const_3000^post_4, x^0'=x^post_4, y^0'=y^post_4, [ __const_1000^0==__const_1000^post_4 && __const_110^0==__const_110^post_4 && __const_2000^0==__const_2000^post_4 && __const_3000^0==__const_3000^post_4 && x^0==x^post_4 && y^0==y^post_4 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 3: l3 -> l2 : __const_1000^0'=__const_1000^post_4, __const_110^0'=__const_110^post_4, __const_2000^0'=__const_2000^post_4, __const_3000^0'=__const_3000^post_4, x^0'=x^post_4, y^0'=y^post_4, [ __const_1000^0==__const_1000^post_4 && __const_110^0==__const_110^post_4 && __const_2000^0==__const_2000^post_4 && __const_3000^0==__const_3000^post_4 && x^0==x^post_4 && y^0==y^post_4 ], cost: 1 Simplified all rules, resulting in: Start location: l3 0: l0 -> l1 : x^0'=x^0+__const_1000^0, [ 1+y^0<=__const_2000^0 && 1+__const_110^0<=x^0+__const_1000^0 ], cost: 1 1: l1 -> l0 : [], cost: 1 2: l2 -> l0 : y^0'=__const_3000^0, [], cost: 1 3: l3 -> l2 : [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: l3 5: l0 -> l0 : x^0'=x^0+__const_1000^0, [ 1+y^0<=__const_2000^0 && 1+__const_110^0<=x^0+__const_1000^0 ], cost: 2 4: l3 -> l0 : y^0'=__const_3000^0, [], cost: 2 Accelerating simple loops of location 0. Accelerating the following rules: 5: l0 -> l0 : x^0'=x^0+__const_1000^0, [ 1+y^0<=__const_2000^0 && 1+__const_110^0<=x^0+__const_1000^0 ], cost: 2 [test] deduced pseudo-invariant -__const_1000^0<=0, also trying __const_1000^0<=-1 Accelerated rule 5 with non-termination, yielding the new rule 6. Accelerated rule 5 with non-termination, yielding the new rule 7. Accelerated rule 5 with backward acceleration, yielding the new rule 8. Accelerated rule 5 with backward acceleration, yielding the new rule 9. [accelerate] Nesting with 1 inner and 1 outer candidates Also removing duplicate rules: 7. Accelerated all simple loops using metering functions (where possible): Start location: l3 5: l0 -> l0 : x^0'=x^0+__const_1000^0, [ 1+y^0<=__const_2000^0 && 1+__const_110^0<=x^0+__const_1000^0 ], cost: 2 6: l0 -> [4] : [ 1+y^0<=__const_2000^0 && 1+__const_110^0<=x^0+__const_1000^0 && x^0==1 && __const_110^0==0 && y^0==0 && __const_2000^0==1 && __const_1000^0==0 ], cost: NONTERM 8: l0 -> [4] : [ 1+y^0<=__const_2000^0 && 1+__const_110^0<=x^0+__const_1000^0 && -__const_1000^0<=0 ], cost: NONTERM 9: l0 -> l0 : x^0'=k*__const_1000^0+x^0, [ 1+y^0<=__const_2000^0 && __const_1000^0<=-1 && k>=0 && 1+__const_110^0<=x^0+__const_1000^0*(-1+k)+__const_1000^0 ], cost: 2*k 4: l3 -> l0 : y^0'=__const_3000^0, [], cost: 2 Chained accelerated rules (with incoming rules): Start location: l3 4: l3 -> l0 : y^0'=__const_3000^0, [], cost: 2 10: l3 -> l0 : x^0'=x^0+__const_1000^0, y^0'=__const_3000^0, [ 1+__const_3000^0<=__const_2000^0 && 1+__const_110^0<=x^0+__const_1000^0 ], cost: 4 11: l3 -> [4] : [ 1+__const_3000^0<=__const_2000^0 && 1+__const_110^0<=x^0+__const_1000^0 && x^0==1 && __const_110^0==0 && __const_3000^0==0 && __const_2000^0==1 && __const_1000^0==0 ], cost: NONTERM 12: l3 -> [4] : [ 1+__const_3000^0<=__const_2000^0 && 1+__const_110^0<=x^0+__const_1000^0 && -__const_1000^0<=0 ], cost: NONTERM 13: l3 -> l0 : x^0'=k*__const_1000^0+x^0, y^0'=__const_3000^0, [ 1+__const_3000^0<=__const_2000^0 && __const_1000^0<=-1 && k>=0 && 1+__const_110^0<=x^0+__const_1000^0*(-1+k)+__const_1000^0 ], cost: 2+2*k Removed unreachable locations (and leaf rules with constant cost): Start location: l3 11: l3 -> [4] : [ 1+__const_3000^0<=__const_2000^0 && 1+__const_110^0<=x^0+__const_1000^0 && x^0==1 && __const_110^0==0 && __const_3000^0==0 && __const_2000^0==1 && __const_1000^0==0 ], cost: NONTERM 12: l3 -> [4] : [ 1+__const_3000^0<=__const_2000^0 && 1+__const_110^0<=x^0+__const_1000^0 && -__const_1000^0<=0 ], cost: NONTERM 13: l3 -> l0 : x^0'=k*__const_1000^0+x^0, y^0'=__const_3000^0, [ 1+__const_3000^0<=__const_2000^0 && __const_1000^0<=-1 && k>=0 && 1+__const_110^0<=x^0+__const_1000^0*(-1+k)+__const_1000^0 ], cost: 2+2*k ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l3 11: l3 -> [4] : [ 1+__const_3000^0<=__const_2000^0 && 1+__const_110^0<=x^0+__const_1000^0 && x^0==1 && __const_110^0==0 && __const_3000^0==0 && __const_2000^0==1 && __const_1000^0==0 ], cost: NONTERM 12: l3 -> [4] : [ 1+__const_3000^0<=__const_2000^0 && 1+__const_110^0<=x^0+__const_1000^0 && -__const_1000^0<=0 ], cost: NONTERM 13: l3 -> l0 : x^0'=k*__const_1000^0+x^0, y^0'=__const_3000^0, [ 1+__const_3000^0<=__const_2000^0 && __const_1000^0<=-1 && k>=0 && 1+__const_110^0<=x^0+__const_1000^0*(-1+k)+__const_1000^0 ], cost: 2+2*k Computing asymptotic complexity for rule 12 Guard is satisfiable, yielding nontermination Resulting cost NONTERM has complexity: Nonterm Found new complexity Nonterm. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Nonterm Cpx degree: Nonterm Solved cost: NONTERM Rule cost: NONTERM Rule guard: [ 1+__const_3000^0<=__const_2000^0 && 1+__const_110^0<=x^0+__const_1000^0 && -__const_1000^0<=0 ] NO