WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l6 0: l0 -> l2 : Result_4^0'=Result_4^post_1, b_7^0'=b_7^post_1, x_5^0'=x_5^post_1, y_6^0'=y_6^post_1, [ 0<=-1-x_5^0+y_6^0 && Result_4^0==Result_4^post_1 && b_7^0==b_7^post_1 && x_5^0==x_5^post_1 && y_6^0==y_6^post_1 ], cost: 1 4: l0 -> l4 : Result_4^0'=Result_4^post_5, b_7^0'=b_7^post_5, x_5^0'=x_5^post_5, y_6^0'=y_6^post_5, [ -x_5^0+y_6^0<=0 && Result_4^post_5==Result_4^post_5 && b_7^0==b_7^post_5 && x_5^0==x_5^post_5 && y_6^0==y_6^post_5 ], cost: 1 1: l2 -> l3 : Result_4^0'=Result_4^post_2, b_7^0'=b_7^post_2, x_5^0'=x_5^post_2, y_6^0'=y_6^post_2, [ 1+b_7^0<=0 && Result_4^0==Result_4^post_2 && b_7^0==b_7^post_2 && x_5^0==x_5^post_2 && y_6^0==y_6^post_2 ], cost: 1 2: l2 -> l3 : Result_4^0'=Result_4^post_3, b_7^0'=b_7^post_3, x_5^0'=x_5^post_3, y_6^0'=y_6^post_3, [ 1<=b_7^0 && Result_4^0==Result_4^post_3 && b_7^0==b_7^post_3 && x_5^0==x_5^post_3 && y_6^0==y_6^post_3 ], cost: 1 3: l3 -> l1 : Result_4^0'=Result_4^post_4, b_7^0'=b_7^post_4, x_5^0'=x_5^post_4, y_6^0'=y_6^post_4, [ b_7^post_4==0 && y_6^post_4==-1+y_6^0 && Result_4^0==Result_4^post_4 && x_5^0==x_5^post_4 ], cost: 1 6: l1 -> l0 : Result_4^0'=Result_4^post_7, b_7^0'=b_7^post_7, x_5^0'=x_5^post_7, y_6^0'=y_6^post_7, [ 0<=-1-x_5^0+y_6^0 && b_7^0<=0 && 0<=b_7^0 && b_7^post_7==1 && x_5^post_7==1+x_5^0 && Result_4^0==Result_4^post_7 && y_6^0==y_6^post_7 ], cost: 1 7: l1 -> l4 : Result_4^0'=Result_4^post_8, b_7^0'=b_7^post_8, x_5^0'=x_5^post_8, y_6^0'=y_6^post_8, [ -x_5^0+y_6^0<=0 && Result_4^post_8==Result_4^post_8 && b_7^0==b_7^post_8 && x_5^0==x_5^post_8 && y_6^0==y_6^post_8 ], cost: 1 5: l5 -> l1 : Result_4^0'=Result_4^post_6, b_7^0'=b_7^post_6, x_5^0'=x_5^post_6, y_6^0'=y_6^post_6, [ b_7^post_6==0 && Result_4^0==Result_4^post_6 && x_5^0==x_5^post_6 && y_6^0==y_6^post_6 ], cost: 1 8: l6 -> l5 : Result_4^0'=Result_4^post_9, b_7^0'=b_7^post_9, x_5^0'=x_5^post_9, y_6^0'=y_6^post_9, [ Result_4^0==Result_4^post_9 && b_7^0==b_7^post_9 && x_5^0==x_5^post_9 && y_6^0==y_6^post_9 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 8: l6 -> l5 : Result_4^0'=Result_4^post_9, b_7^0'=b_7^post_9, x_5^0'=x_5^post_9, y_6^0'=y_6^post_9, [ Result_4^0==Result_4^post_9 && b_7^0==b_7^post_9 && x_5^0==x_5^post_9 && y_6^0==y_6^post_9 ], cost: 1 Removed unreachable and leaf rules: Start location: l6 0: l0 -> l2 : Result_4^0'=Result_4^post_1, b_7^0'=b_7^post_1, x_5^0'=x_5^post_1, y_6^0'=y_6^post_1, [ 0<=-1-x_5^0+y_6^0 && Result_4^0==Result_4^post_1 && b_7^0==b_7^post_1 && x_5^0==x_5^post_1 && y_6^0==y_6^post_1 ], cost: 1 1: l2 -> l3 : Result_4^0'=Result_4^post_2, b_7^0'=b_7^post_2, x_5^0'=x_5^post_2, y_6^0'=y_6^post_2, [ 1+b_7^0<=0 && Result_4^0==Result_4^post_2 && b_7^0==b_7^post_2 && x_5^0==x_5^post_2 && y_6^0==y_6^post_2 ], cost: 1 2: l2 -> l3 : Result_4^0'=Result_4^post_3, b_7^0'=b_7^post_3, x_5^0'=x_5^post_3, y_6^0'=y_6^post_3, [ 1<=b_7^0 && Result_4^0==Result_4^post_3 && b_7^0==b_7^post_3 && x_5^0==x_5^post_3 && y_6^0==y_6^post_3 ], cost: 1 3: l3 -> l1 : Result_4^0'=Result_4^post_4, b_7^0'=b_7^post_4, x_5^0'=x_5^post_4, y_6^0'=y_6^post_4, [ b_7^post_4==0 && y_6^post_4==-1+y_6^0 && Result_4^0==Result_4^post_4 && x_5^0==x_5^post_4 ], cost: 1 6: l1 -> l0 : Result_4^0'=Result_4^post_7, b_7^0'=b_7^post_7, x_5^0'=x_5^post_7, y_6^0'=y_6^post_7, [ 0<=-1-x_5^0+y_6^0 && b_7^0<=0 && 0<=b_7^0 && b_7^post_7==1 && x_5^post_7==1+x_5^0 && Result_4^0==Result_4^post_7 && y_6^0==y_6^post_7 ], cost: 1 5: l5 -> l1 : Result_4^0'=Result_4^post_6, b_7^0'=b_7^post_6, x_5^0'=x_5^post_6, y_6^0'=y_6^post_6, [ b_7^post_6==0 && Result_4^0==Result_4^post_6 && x_5^0==x_5^post_6 && y_6^0==y_6^post_6 ], cost: 1 8: l6 -> l5 : Result_4^0'=Result_4^post_9, b_7^0'=b_7^post_9, x_5^0'=x_5^post_9, y_6^0'=y_6^post_9, [ Result_4^0==Result_4^post_9 && b_7^0==b_7^post_9 && x_5^0==x_5^post_9 && y_6^0==y_6^post_9 ], cost: 1 Simplified all rules, resulting in: Start location: l6 0: l0 -> l2 : [ 0<=-1-x_5^0+y_6^0 ], cost: 1 1: l2 -> l3 : [ 1+b_7^0<=0 ], cost: 1 2: l2 -> l3 : [ 1<=b_7^0 ], cost: 1 3: l3 -> l1 : b_7^0'=0, y_6^0'=-1+y_6^0, [], cost: 1 6: l1 -> l0 : b_7^0'=1, x_5^0'=1+x_5^0, [ 0<=-1-x_5^0+y_6^0 && b_7^0==0 ], cost: 1 5: l5 -> l1 : b_7^0'=0, [], cost: 1 8: l6 -> l5 : [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: l6 1: l2 -> l3 : [ 1+b_7^0<=0 ], cost: 1 2: l2 -> l3 : [ 1<=b_7^0 ], cost: 1 3: l3 -> l1 : b_7^0'=0, y_6^0'=-1+y_6^0, [], cost: 1 10: l1 -> l2 : b_7^0'=1, x_5^0'=1+x_5^0, [ b_7^0==0 && 0<=-2-x_5^0+y_6^0 ], cost: 2 9: l6 -> l1 : b_7^0'=0, [], cost: 2 Eliminated locations (on tree-shaped paths): Start location: l6 3: l3 -> l1 : b_7^0'=0, y_6^0'=-1+y_6^0, [], cost: 1 11: l1 -> l3 : b_7^0'=1, x_5^0'=1+x_5^0, [ b_7^0==0 && 0<=-2-x_5^0+y_6^0 ], cost: 3 9: l6 -> l1 : b_7^0'=0, [], cost: 2 Eliminated locations (on linear paths): Start location: l6 12: l1 -> l1 : b_7^0'=0, x_5^0'=1+x_5^0, y_6^0'=-1+y_6^0, [ b_7^0==0 && 0<=-2-x_5^0+y_6^0 ], cost: 4 9: l6 -> l1 : b_7^0'=0, [], cost: 2 Accelerating simple loops of location 3. Accelerating the following rules: 12: l1 -> l1 : b_7^0'=0, x_5^0'=1+x_5^0, y_6^0'=-1+y_6^0, [ b_7^0==0 && 0<=-2-x_5^0+y_6^0 ], cost: 4 Accelerated rule 12 with backward acceleration, yielding the new rule 13. [accelerate] Nesting with 1 inner and 1 outer candidates Removing the simple loops: 12. Accelerated all simple loops using metering functions (where possible): Start location: l6 13: l1 -> l1 : b_7^0'=0, x_5^0'=x_5^0+k, y_6^0'=-k+y_6^0, [ b_7^0==0 && k>=1 && 0<=-x_5^0-2*k+y_6^0 ], cost: 4*k 9: l6 -> l1 : b_7^0'=0, [], cost: 2 Chained accelerated rules (with incoming rules): Start location: l6 9: l6 -> l1 : b_7^0'=0, [], cost: 2 14: l6 -> l1 : b_7^0'=0, x_5^0'=x_5^0+k, y_6^0'=-k+y_6^0, [ k>=1 && 0<=-x_5^0-2*k+y_6^0 ], cost: 2+4*k Removed unreachable locations (and leaf rules with constant cost): Start location: l6 14: l6 -> l1 : b_7^0'=0, x_5^0'=x_5^0+k, y_6^0'=-k+y_6^0, [ k>=1 && 0<=-x_5^0-2*k+y_6^0 ], cost: 2+4*k ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l6 14: l6 -> l1 : b_7^0'=0, x_5^0'=x_5^0+k, y_6^0'=-k+y_6^0, [ k>=1 && 0<=-x_5^0-2*k+y_6^0 ], cost: 2+4*k Computing asymptotic complexity for rule 14 Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [ Result_4^0==Result_4^post_9 && b_7^0==b_7^post_9 && x_5^0==x_5^post_9 && y_6^0==y_6^post_9 ] WORST_CASE(Omega(1),?)