WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l4 0: l0 -> l1 : c0^0'=c0^post_1, deltaext^0'=deltaext^post_1, wnt^0'=wnt^post_1, [ 1+wnt^0+c0^0<=-1+2*deltaext^0 && deltaext^post_1==-1+deltaext^0 && c0^0==c0^post_1 && wnt^0==wnt^post_1 ], cost: 1 2: l0 -> l2 : c0^0'=c0^post_3, deltaext^0'=deltaext^post_3, wnt^0'=wnt^post_3, [ 1+2*deltaext^0<=wnt^0+c0^0 && deltaext^post_3==1+deltaext^0 && c0^0==c0^post_3 && wnt^0==wnt^post_3 ], cost: 1 1: l1 -> l0 : c0^0'=c0^post_2, deltaext^0'=deltaext^post_2, wnt^0'=wnt^post_2, [ c0^0==c0^post_2 && deltaext^0==deltaext^post_2 && wnt^0==wnt^post_2 ], cost: 1 3: l2 -> l0 : c0^0'=c0^post_4, deltaext^0'=deltaext^post_4, wnt^0'=wnt^post_4, [ c0^0==c0^post_4 && deltaext^0==deltaext^post_4 && wnt^0==wnt^post_4 ], cost: 1 4: l3 -> l0 : c0^0'=c0^post_5, deltaext^0'=deltaext^post_5, wnt^0'=wnt^post_5, [ 0<=wnt^0 && wnt^0<=3 && 0<=deltaext^0 && deltaext^0<=3 && c0^post_5==2 && deltaext^0==deltaext^post_5 && wnt^0==wnt^post_5 ], cost: 1 5: l4 -> l3 : c0^0'=c0^post_6, deltaext^0'=deltaext^post_6, wnt^0'=wnt^post_6, [ c0^0==c0^post_6 && deltaext^0==deltaext^post_6 && wnt^0==wnt^post_6 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 5: l4 -> l3 : c0^0'=c0^post_6, deltaext^0'=deltaext^post_6, wnt^0'=wnt^post_6, [ c0^0==c0^post_6 && deltaext^0==deltaext^post_6 && wnt^0==wnt^post_6 ], cost: 1 Simplified all rules, resulting in: Start location: l4 0: l0 -> l1 : deltaext^0'=-1+deltaext^0, [ 1+wnt^0+c0^0<=-1+2*deltaext^0 ], cost: 1 2: l0 -> l2 : deltaext^0'=1+deltaext^0, [ 1+2*deltaext^0<=wnt^0+c0^0 ], cost: 1 1: l1 -> l0 : [], cost: 1 3: l2 -> l0 : [], cost: 1 4: l3 -> l0 : c0^0'=2, [ 0<=wnt^0 && wnt^0<=3 && 0<=deltaext^0 && deltaext^0<=3 ], cost: 1 5: l4 -> l3 : [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: l4 7: l0 -> l0 : deltaext^0'=-1+deltaext^0, [ 1+wnt^0+c0^0<=-1+2*deltaext^0 ], cost: 2 8: l0 -> l0 : deltaext^0'=1+deltaext^0, [ 1+2*deltaext^0<=wnt^0+c0^0 ], cost: 2 6: l4 -> l0 : c0^0'=2, [ 0<=wnt^0 && wnt^0<=3 && 0<=deltaext^0 && deltaext^0<=3 ], cost: 2 Accelerating simple loops of location 0. Accelerating the following rules: 7: l0 -> l0 : deltaext^0'=-1+deltaext^0, [ 1+wnt^0+c0^0<=-1+2*deltaext^0 ], cost: 2 8: l0 -> l0 : deltaext^0'=1+deltaext^0, [ 1+2*deltaext^0<=wnt^0+c0^0 ], cost: 2 Accelerated rule 7 with backward acceleration, yielding the new rule 9. Accelerated rule 8 with backward acceleration, yielding the new rule 10. [accelerate] Nesting with 2 inner and 2 outer candidates Removing the simple loops: 7 8. Accelerated all simple loops using metering functions (where possible): Start location: l4 9: l0 -> l0 : deltaext^0'=deltaext^0-k, [ k>=0 && 1+wnt^0+c0^0<=1+2*deltaext^0-2*k ], cost: 2*k 10: l0 -> l0 : deltaext^0'=deltaext^0+k_1, [ k_1>=0 && -1+2*deltaext^0+2*k_1<=wnt^0+c0^0 ], cost: 2*k_1 6: l4 -> l0 : c0^0'=2, [ 0<=wnt^0 && wnt^0<=3 && 0<=deltaext^0 && deltaext^0<=3 ], cost: 2 Chained accelerated rules (with incoming rules): Start location: l4 6: l4 -> l0 : c0^0'=2, [ 0<=wnt^0 && wnt^0<=3 && 0<=deltaext^0 && deltaext^0<=3 ], cost: 2 11: l4 -> l0 : c0^0'=2, deltaext^0'=deltaext^0-k, [ 0<=wnt^0 && wnt^0<=3 && 0<=deltaext^0 && deltaext^0<=3 && k>=0 && 3+wnt^0<=1+2*deltaext^0-2*k ], cost: 2+2*k 12: l4 -> l0 : c0^0'=2, deltaext^0'=deltaext^0+k_1, [ 0<=wnt^0 && wnt^0<=3 && 0<=deltaext^0 && deltaext^0<=3 && k_1>=0 && -1+2*deltaext^0+2*k_1<=2+wnt^0 ], cost: 2+2*k_1 Removed unreachable locations (and leaf rules with constant cost): Start location: l4 11: l4 -> l0 : c0^0'=2, deltaext^0'=deltaext^0-k, [ 0<=wnt^0 && wnt^0<=3 && 0<=deltaext^0 && deltaext^0<=3 && k>=0 && 3+wnt^0<=1+2*deltaext^0-2*k ], cost: 2+2*k 12: l4 -> l0 : c0^0'=2, deltaext^0'=deltaext^0+k_1, [ 0<=wnt^0 && wnt^0<=3 && 0<=deltaext^0 && deltaext^0<=3 && k_1>=0 && -1+2*deltaext^0+2*k_1<=2+wnt^0 ], cost: 2+2*k_1 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l4 11: l4 -> l0 : c0^0'=2, deltaext^0'=deltaext^0-k, [ 0<=wnt^0 && wnt^0<=3 && 0<=deltaext^0 && deltaext^0<=3 && k>=0 && 3+wnt^0<=1+2*deltaext^0-2*k ], cost: 2+2*k 12: l4 -> l0 : c0^0'=2, deltaext^0'=deltaext^0+k_1, [ 0<=wnt^0 && wnt^0<=3 && 0<=deltaext^0 && deltaext^0<=3 && k_1>=0 && -1+2*deltaext^0+2*k_1<=2+wnt^0 ], cost: 2+2*k_1 Computing asymptotic complexity for rule 11 Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 12 Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [ c0^0==c0^post_6 && deltaext^0==deltaext^post_6 && wnt^0==wnt^post_6 ] WORST_CASE(Omega(1),?)