WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l4 0: l0 -> l1 : Result_4^0'=Result_4^post_1, x_5^0'=x_5^post_1, [ -x_5^0<=0 && x_5^post_1==1+x_5^0 && Result_4^0==Result_4^post_1 ], cost: 1 1: l0 -> l1 : Result_4^0'=Result_4^post_2, x_5^0'=x_5^post_2, [ 0<=-1-x_5^0 && Result_4^0==Result_4^post_2 && x_5^0==x_5^post_2 ], cost: 1 3: l1 -> l3 : Result_4^0'=Result_4^post_4, x_5^0'=x_5^post_4, [ Result_4^post_4==Result_4^post_4 && x_5^0==x_5^post_4 ], cost: 1 2: l2 -> l0 : Result_4^0'=Result_4^post_3, x_5^0'=x_5^post_3, [ Result_4^0==Result_4^post_3 && x_5^0==x_5^post_3 ], cost: 1 4: l4 -> l2 : Result_4^0'=Result_4^post_5, x_5^0'=x_5^post_5, [ Result_4^0==Result_4^post_5 && x_5^0==x_5^post_5 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 4: l4 -> l2 : Result_4^0'=Result_4^post_5, x_5^0'=x_5^post_5, [ Result_4^0==Result_4^post_5 && x_5^0==x_5^post_5 ], cost: 1 Removed unreachable and leaf rules: Start location: l4 Empty problem, aborting Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [ Result_4^0==Result_4^post_5 && x_5^0==x_5^post_5 ] WORST_CASE(Omega(1),?)