WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l7 0: l0 -> l1 : Result_4^0'=Result_4^post_1, x_5^0'=x_5^post_1, y_6^0'=y_6^post_1, [ Result_4^0==Result_4^post_1 && x_5^0==x_5^post_1 && y_6^0==y_6^post_1 ], cost: 1 1: l1 -> l3 : Result_4^0'=Result_4^post_2, x_5^0'=x_5^post_2, y_6^0'=y_6^post_2, [ -x_5^0+y_6^0<=0 && -x_5^0+y_6^0<=0 && Result_4^0==Result_4^post_2 && x_5^0==x_5^post_2 && y_6^0==y_6^post_2 ], cost: 1 5: l1 -> l5 : Result_4^0'=Result_4^post_6, x_5^0'=x_5^post_6, y_6^0'=y_6^post_6, [ -x_5^0+y_6^0<=0 && -x_5^0+y_6^0<=0 && x_5^0<=y_6^0 && y_6^0<=x_5^0 && x_5^post_6==1+x_5^0 && Result_4^0==Result_4^post_6 && y_6^0==y_6^post_6 ], cost: 1 7: l1 -> l6 : Result_4^0'=Result_4^post_8, x_5^0'=x_5^post_8, y_6^0'=y_6^post_8, [ 0<=-1-x_5^0+y_6^0 && x_5^post_8==1+x_5^0 && Result_4^0==Result_4^post_8 && y_6^0==y_6^post_8 ], cost: 1 2: l3 -> l4 : Result_4^0'=Result_4^post_3, x_5^0'=x_5^post_3, y_6^0'=y_6^post_3, [ 1+x_5^0<=y_6^0 && Result_4^0==Result_4^post_3 && x_5^0==x_5^post_3 && y_6^0==y_6^post_3 ], cost: 1 3: l3 -> l4 : Result_4^0'=Result_4^post_4, x_5^0'=x_5^post_4, y_6^0'=y_6^post_4, [ 1+y_6^0<=x_5^0 && Result_4^0==Result_4^post_4 && x_5^0==x_5^post_4 && y_6^0==y_6^post_4 ], cost: 1 4: l4 -> l2 : Result_4^0'=Result_4^post_5, x_5^0'=x_5^post_5, y_6^0'=y_6^post_5, [ Result_4^post_5==Result_4^post_5 && x_5^0==x_5^post_5 && y_6^0==y_6^post_5 ], cost: 1 6: l5 -> l1 : Result_4^0'=Result_4^post_7, x_5^0'=x_5^post_7, y_6^0'=y_6^post_7, [ Result_4^0==Result_4^post_7 && x_5^0==x_5^post_7 && y_6^0==y_6^post_7 ], cost: 1 8: l6 -> l1 : Result_4^0'=Result_4^post_9, x_5^0'=x_5^post_9, y_6^0'=y_6^post_9, [ Result_4^0==Result_4^post_9 && x_5^0==x_5^post_9 && y_6^0==y_6^post_9 ], cost: 1 9: l7 -> l0 : Result_4^0'=Result_4^post_10, x_5^0'=x_5^post_10, y_6^0'=y_6^post_10, [ Result_4^0==Result_4^post_10 && x_5^0==x_5^post_10 && y_6^0==y_6^post_10 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 9: l7 -> l0 : Result_4^0'=Result_4^post_10, x_5^0'=x_5^post_10, y_6^0'=y_6^post_10, [ Result_4^0==Result_4^post_10 && x_5^0==x_5^post_10 && y_6^0==y_6^post_10 ], cost: 1 Removed unreachable and leaf rules: Start location: l7 0: l0 -> l1 : Result_4^0'=Result_4^post_1, x_5^0'=x_5^post_1, y_6^0'=y_6^post_1, [ Result_4^0==Result_4^post_1 && x_5^0==x_5^post_1 && y_6^0==y_6^post_1 ], cost: 1 5: l1 -> l5 : Result_4^0'=Result_4^post_6, x_5^0'=x_5^post_6, y_6^0'=y_6^post_6, [ -x_5^0+y_6^0<=0 && -x_5^0+y_6^0<=0 && x_5^0<=y_6^0 && y_6^0<=x_5^0 && x_5^post_6==1+x_5^0 && Result_4^0==Result_4^post_6 && y_6^0==y_6^post_6 ], cost: 1 7: l1 -> l6 : Result_4^0'=Result_4^post_8, x_5^0'=x_5^post_8, y_6^0'=y_6^post_8, [ 0<=-1-x_5^0+y_6^0 && x_5^post_8==1+x_5^0 && Result_4^0==Result_4^post_8 && y_6^0==y_6^post_8 ], cost: 1 6: l5 -> l1 : Result_4^0'=Result_4^post_7, x_5^0'=x_5^post_7, y_6^0'=y_6^post_7, [ Result_4^0==Result_4^post_7 && x_5^0==x_5^post_7 && y_6^0==y_6^post_7 ], cost: 1 8: l6 -> l1 : Result_4^0'=Result_4^post_9, x_5^0'=x_5^post_9, y_6^0'=y_6^post_9, [ Result_4^0==Result_4^post_9 && x_5^0==x_5^post_9 && y_6^0==y_6^post_9 ], cost: 1 9: l7 -> l0 : Result_4^0'=Result_4^post_10, x_5^0'=x_5^post_10, y_6^0'=y_6^post_10, [ Result_4^0==Result_4^post_10 && x_5^0==x_5^post_10 && y_6^0==y_6^post_10 ], cost: 1 Simplified all rules, resulting in: Start location: l7 0: l0 -> l1 : [], cost: 1 5: l1 -> l5 : x_5^0'=1+x_5^0, [ -x_5^0+y_6^0==0 ], cost: 1 7: l1 -> l6 : x_5^0'=1+x_5^0, [ 0<=-1-x_5^0+y_6^0 ], cost: 1 6: l5 -> l1 : [], cost: 1 8: l6 -> l1 : [], cost: 1 9: l7 -> l0 : [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: l7 11: l1 -> l1 : x_5^0'=1+x_5^0, [ -x_5^0+y_6^0==0 ], cost: 2 12: l1 -> l1 : x_5^0'=1+x_5^0, [ 0<=-1-x_5^0+y_6^0 ], cost: 2 10: l7 -> l1 : [], cost: 2 Accelerating simple loops of location 1. Accelerating the following rules: 11: l1 -> l1 : x_5^0'=1+x_5^0, [ -x_5^0+y_6^0==0 ], cost: 2 12: l1 -> l1 : x_5^0'=1+x_5^0, [ 0<=-1-x_5^0+y_6^0 ], cost: 2 Failed to prove monotonicity of the guard of rule 11. Accelerated rule 12 with backward acceleration, yielding the new rule 13. [accelerate] Nesting with 2 inner and 2 outer candidates Removing the simple loops: 12. Accelerated all simple loops using metering functions (where possible): Start location: l7 11: l1 -> l1 : x_5^0'=1+x_5^0, [ -x_5^0+y_6^0==0 ], cost: 2 13: l1 -> l1 : x_5^0'=y_6^0, [ -x_5^0+y_6^0>=0 ], cost: -2*x_5^0+2*y_6^0 10: l7 -> l1 : [], cost: 2 Chained accelerated rules (with incoming rules): Start location: l7 10: l7 -> l1 : [], cost: 2 14: l7 -> l1 : x_5^0'=1+x_5^0, [ -x_5^0+y_6^0==0 ], cost: 4 15: l7 -> l1 : x_5^0'=y_6^0, [ -x_5^0+y_6^0>=0 ], cost: 2-2*x_5^0+2*y_6^0 Removed unreachable locations (and leaf rules with constant cost): Start location: l7 15: l7 -> l1 : x_5^0'=y_6^0, [ -x_5^0+y_6^0>=0 ], cost: 2-2*x_5^0+2*y_6^0 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l7 15: l7 -> l1 : x_5^0'=y_6^0, [ -x_5^0+y_6^0>=0 ], cost: 2-2*x_5^0+2*y_6^0 Computing asymptotic complexity for rule 15 Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [ Result_4^0==Result_4^post_10 && x_5^0==x_5^post_10 && y_6^0==y_6^post_10 ] WORST_CASE(Omega(1),?)