WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l4 0: l0 -> l1 : Result_4^0'=Result_4^post_1, b_7^0'=b_7^post_1, x_5^0'=x_5^post_1, y_6^0'=y_6^post_1, [ 0<=-1-x_5^0+y_6^0 && 1-b_7^0<=0 && b_7^post_1==0 && y_6^post_1==-1+y_6^0 && Result_4^0==Result_4^post_1 && x_5^0==x_5^post_1 ], cost: 1 1: l0 -> l2 : Result_4^0'=Result_4^post_2, b_7^0'=b_7^post_2, x_5^0'=x_5^post_2, y_6^0'=y_6^post_2, [ -x_5^0+y_6^0<=0 && Result_4^post_2==Result_4^post_2 && b_7^0==b_7^post_2 && x_5^0==x_5^post_2 && y_6^0==y_6^post_2 ], cost: 1 3: l1 -> l0 : Result_4^0'=Result_4^post_4, b_7^0'=b_7^post_4, x_5^0'=x_5^post_4, y_6^0'=y_6^post_4, [ 0<=-1-x_5^0+y_6^0 && 0<=-b_7^0 && b_7^post_4==1 && x_5^post_4==1+x_5^0 && Result_4^0==Result_4^post_4 && y_6^0==y_6^post_4 ], cost: 1 4: l1 -> l2 : Result_4^0'=Result_4^post_5, b_7^0'=b_7^post_5, x_5^0'=x_5^post_5, y_6^0'=y_6^post_5, [ -x_5^0+y_6^0<=0 && Result_4^post_5==Result_4^post_5 && b_7^0==b_7^post_5 && x_5^0==x_5^post_5 && y_6^0==y_6^post_5 ], cost: 1 2: l3 -> l1 : Result_4^0'=Result_4^post_3, b_7^0'=b_7^post_3, x_5^0'=x_5^post_3, y_6^0'=y_6^post_3, [ b_7^post_3==0 && Result_4^0==Result_4^post_3 && x_5^0==x_5^post_3 && y_6^0==y_6^post_3 ], cost: 1 5: l4 -> l3 : Result_4^0'=Result_4^post_6, b_7^0'=b_7^post_6, x_5^0'=x_5^post_6, y_6^0'=y_6^post_6, [ Result_4^0==Result_4^post_6 && b_7^0==b_7^post_6 && x_5^0==x_5^post_6 && y_6^0==y_6^post_6 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 5: l4 -> l3 : Result_4^0'=Result_4^post_6, b_7^0'=b_7^post_6, x_5^0'=x_5^post_6, y_6^0'=y_6^post_6, [ Result_4^0==Result_4^post_6 && b_7^0==b_7^post_6 && x_5^0==x_5^post_6 && y_6^0==y_6^post_6 ], cost: 1 Removed unreachable and leaf rules: Start location: l4 0: l0 -> l1 : Result_4^0'=Result_4^post_1, b_7^0'=b_7^post_1, x_5^0'=x_5^post_1, y_6^0'=y_6^post_1, [ 0<=-1-x_5^0+y_6^0 && 1-b_7^0<=0 && b_7^post_1==0 && y_6^post_1==-1+y_6^0 && Result_4^0==Result_4^post_1 && x_5^0==x_5^post_1 ], cost: 1 3: l1 -> l0 : Result_4^0'=Result_4^post_4, b_7^0'=b_7^post_4, x_5^0'=x_5^post_4, y_6^0'=y_6^post_4, [ 0<=-1-x_5^0+y_6^0 && 0<=-b_7^0 && b_7^post_4==1 && x_5^post_4==1+x_5^0 && Result_4^0==Result_4^post_4 && y_6^0==y_6^post_4 ], cost: 1 2: l3 -> l1 : Result_4^0'=Result_4^post_3, b_7^0'=b_7^post_3, x_5^0'=x_5^post_3, y_6^0'=y_6^post_3, [ b_7^post_3==0 && Result_4^0==Result_4^post_3 && x_5^0==x_5^post_3 && y_6^0==y_6^post_3 ], cost: 1 5: l4 -> l3 : Result_4^0'=Result_4^post_6, b_7^0'=b_7^post_6, x_5^0'=x_5^post_6, y_6^0'=y_6^post_6, [ Result_4^0==Result_4^post_6 && b_7^0==b_7^post_6 && x_5^0==x_5^post_6 && y_6^0==y_6^post_6 ], cost: 1 Simplified all rules, resulting in: Start location: l4 0: l0 -> l1 : b_7^0'=0, y_6^0'=-1+y_6^0, [ 0<=-1-x_5^0+y_6^0 && 1-b_7^0<=0 ], cost: 1 3: l1 -> l0 : b_7^0'=1, x_5^0'=1+x_5^0, [ 0<=-1-x_5^0+y_6^0 && 0<=-b_7^0 ], cost: 1 2: l3 -> l1 : b_7^0'=0, [], cost: 1 5: l4 -> l3 : [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: l4 7: l1 -> l1 : b_7^0'=0, x_5^0'=1+x_5^0, y_6^0'=-1+y_6^0, [ 0<=-b_7^0 && 0<=-2-x_5^0+y_6^0 ], cost: 2 6: l4 -> l1 : b_7^0'=0, [], cost: 2 Accelerating simple loops of location 1. Accelerating the following rules: 7: l1 -> l1 : b_7^0'=0, x_5^0'=1+x_5^0, y_6^0'=-1+y_6^0, [ 0<=-b_7^0 && 0<=-2-x_5^0+y_6^0 ], cost: 2 Accelerated rule 7 with backward acceleration, yielding the new rule 8. [accelerate] Nesting with 1 inner and 1 outer candidates Removing the simple loops: 7. Accelerated all simple loops using metering functions (where possible): Start location: l4 8: l1 -> l1 : b_7^0'=0, x_5^0'=k+x_5^0, y_6^0'=-k+y_6^0, [ 0<=-b_7^0 && k>=1 && 0<=-2*k-x_5^0+y_6^0 ], cost: 2*k 6: l4 -> l1 : b_7^0'=0, [], cost: 2 Chained accelerated rules (with incoming rules): Start location: l4 6: l4 -> l1 : b_7^0'=0, [], cost: 2 9: l4 -> l1 : b_7^0'=0, x_5^0'=k+x_5^0, y_6^0'=-k+y_6^0, [ k>=1 && 0<=-2*k-x_5^0+y_6^0 ], cost: 2+2*k Removed unreachable locations (and leaf rules with constant cost): Start location: l4 9: l4 -> l1 : b_7^0'=0, x_5^0'=k+x_5^0, y_6^0'=-k+y_6^0, [ k>=1 && 0<=-2*k-x_5^0+y_6^0 ], cost: 2+2*k ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l4 9: l4 -> l1 : b_7^0'=0, x_5^0'=k+x_5^0, y_6^0'=-k+y_6^0, [ k>=1 && 0<=-2*k-x_5^0+y_6^0 ], cost: 2+2*k Computing asymptotic complexity for rule 9 Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [ Result_4^0==Result_4^post_6 && b_7^0==b_7^post_6 && x_5^0==x_5^post_6 && y_6^0==y_6^post_6 ] WORST_CASE(Omega(1),?)