YES Problem 1: (VAR v_NonEmpty:S x:S y:S) (RULES gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ) Problem 1: Innermost Equivalent Processor: -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: GCD(s(x:S),s(y:S)) -> IF_GCD(le(y:S,x:S),s(x:S),s(y:S)) GCD(s(x:S),s(y:S)) -> LE(y:S,x:S) IF_GCD(ffalse,x:S,y:S) -> GCD(minus(y:S,x:S),x:S) IF_GCD(ffalse,x:S,y:S) -> MINUS(y:S,x:S) IF_GCD(ttrue,x:S,y:S) -> GCD(minus(x:S,y:S),y:S) IF_GCD(ttrue,x:S,y:S) -> MINUS(x:S,y:S) LE(s(x:S),s(y:S)) -> LE(x:S,y:S) MINUS(s(x:S),s(y:S)) -> MINUS(x:S,y:S) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S Problem 1: SCC Processor: -> Pairs: GCD(s(x:S),s(y:S)) -> IF_GCD(le(y:S,x:S),s(x:S),s(y:S)) GCD(s(x:S),s(y:S)) -> LE(y:S,x:S) IF_GCD(ffalse,x:S,y:S) -> GCD(minus(y:S,x:S),x:S) IF_GCD(ffalse,x:S,y:S) -> MINUS(y:S,x:S) IF_GCD(ttrue,x:S,y:S) -> GCD(minus(x:S,y:S),y:S) IF_GCD(ttrue,x:S,y:S) -> MINUS(x:S,y:S) LE(s(x:S),s(y:S)) -> LE(x:S,y:S) MINUS(s(x:S),s(y:S)) -> MINUS(x:S,y:S) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: MINUS(s(x:S),s(y:S)) -> MINUS(x:S,y:S) ->->-> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ->->Cycle: ->->-> Pairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) ->->-> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ->->Cycle: ->->-> Pairs: GCD(s(x:S),s(y:S)) -> IF_GCD(le(y:S,x:S),s(x:S),s(y:S)) IF_GCD(ffalse,x:S,y:S) -> GCD(minus(y:S,x:S),x:S) IF_GCD(ttrue,x:S,y:S) -> GCD(minus(x:S,y:S),y:S) ->->-> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: MINUS(s(x:S),s(y:S)) -> MINUS(x:S,y:S) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ->Projection: pi(MINUS) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ->Projection: pi(LE) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Instantiation Processor: -> Pairs: GCD(s(x:S),s(y:S)) -> IF_GCD(le(y:S,x:S),s(x:S),s(y:S)) IF_GCD(ffalse,x:S,y:S) -> GCD(minus(y:S,x:S),x:S) IF_GCD(ttrue,x:S,y:S) -> GCD(minus(x:S,y:S),y:S) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ->Instantiated Pairs: ->->Original Pair: IF_GCD(ffalse,x:S,y:S) -> GCD(minus(y:S,x:S),x:S) ->-> Instantiated pairs: IF_GCD(ffalse,s(x4:S),s(x5:S)) -> GCD(minus(s(x5:S),s(x4:S)),s(x4:S)) ->->Original Pair: IF_GCD(ttrue,x:S,y:S) -> GCD(minus(x:S,y:S),y:S) ->-> Instantiated pairs: IF_GCD(ttrue,s(x4:S),s(x5:S)) -> GCD(minus(s(x4:S),s(x5:S)),s(x5:S)) Problem 1.3: SCC Processor: -> Pairs: GCD(s(x:S),s(y:S)) -> IF_GCD(le(y:S,x:S),s(x:S),s(y:S)) IF_GCD(ffalse,s(x4:S),s(x5:S)) -> GCD(minus(s(x5:S),s(x4:S)),s(x4:S)) IF_GCD(ttrue,s(x4:S),s(x5:S)) -> GCD(minus(s(x4:S),s(x5:S)),s(x5:S)) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: GCD(s(x:S),s(y:S)) -> IF_GCD(le(y:S,x:S),s(x:S),s(y:S)) IF_GCD(ffalse,s(x4:S),s(x5:S)) -> GCD(minus(s(x5:S),s(x4:S)),s(x4:S)) IF_GCD(ttrue,s(x4:S),s(x5:S)) -> GCD(minus(s(x4:S),s(x5:S)),s(x5:S)) ->->-> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S Problem 1.3: Narrowing Processor: -> Pairs: GCD(s(x:S),s(y:S)) -> IF_GCD(le(y:S,x:S),s(x:S),s(y:S)) IF_GCD(ffalse,s(x4:S),s(x5:S)) -> GCD(minus(s(x5:S),s(x4:S)),s(x4:S)) IF_GCD(ttrue,s(x4:S),s(x5:S)) -> GCD(minus(s(x4:S),s(x5:S)),s(x5:S)) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ->Narrowed Pairs: ->->Original Pair: GCD(s(x:S),s(y:S)) -> IF_GCD(le(y:S,x:S),s(x:S),s(y:S)) ->-> Narrowed pairs: GCD(s(0),s(s(x:S))) -> IF_GCD(ffalse,s(0),s(s(x:S))) GCD(s(s(y:S)),s(s(x:S))) -> IF_GCD(le(x:S,y:S),s(s(y:S)),s(s(x:S))) GCD(s(y:S),s(0)) -> IF_GCD(ttrue,s(y:S),s(0)) ->->Original Pair: IF_GCD(ffalse,s(x4:S),s(x5:S)) -> GCD(minus(s(x5:S),s(x4:S)),s(x4:S)) ->-> Narrowed pairs: IF_GCD(ffalse,s(y:S),s(x:S)) -> GCD(minus(x:S,y:S),s(y:S)) ->->Original Pair: IF_GCD(ttrue,s(x4:S),s(x5:S)) -> GCD(minus(s(x4:S),s(x5:S)),s(x5:S)) ->-> Narrowed pairs: IF_GCD(ttrue,s(x:S),s(y:S)) -> GCD(minus(x:S,y:S),s(y:S)) Problem 1.3: SCC Processor: -> Pairs: GCD(s(0),s(s(x:S))) -> IF_GCD(ffalse,s(0),s(s(x:S))) GCD(s(s(y:S)),s(s(x:S))) -> IF_GCD(le(x:S,y:S),s(s(y:S)),s(s(x:S))) GCD(s(y:S),s(0)) -> IF_GCD(ttrue,s(y:S),s(0)) IF_GCD(ffalse,s(y:S),s(x:S)) -> GCD(minus(x:S,y:S),s(y:S)) IF_GCD(ttrue,s(x:S),s(y:S)) -> GCD(minus(x:S,y:S),s(y:S)) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: GCD(s(0),s(s(x:S))) -> IF_GCD(ffalse,s(0),s(s(x:S))) GCD(s(s(y:S)),s(s(x:S))) -> IF_GCD(le(x:S,y:S),s(s(y:S)),s(s(x:S))) GCD(s(y:S),s(0)) -> IF_GCD(ttrue,s(y:S),s(0)) IF_GCD(ffalse,s(y:S),s(x:S)) -> GCD(minus(x:S,y:S),s(y:S)) IF_GCD(ttrue,s(x:S),s(y:S)) -> GCD(minus(x:S,y:S),s(y:S)) ->->-> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S Problem 1.3: Reduction Pairs Processor: -> Pairs: GCD(s(0),s(s(x:S))) -> IF_GCD(ffalse,s(0),s(s(x:S))) GCD(s(s(y:S)),s(s(x:S))) -> IF_GCD(le(x:S,y:S),s(s(y:S)),s(s(x:S))) GCD(s(y:S),s(0)) -> IF_GCD(ttrue,s(y:S),s(0)) IF_GCD(ffalse,s(y:S),s(x:S)) -> GCD(minus(x:S,y:S),s(y:S)) IF_GCD(ttrue,s(x:S),s(y:S)) -> GCD(minus(x:S,y:S),s(y:S)) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S -> Usable rules: le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [gcd](X1,X2) = 0 [if_gcd](X1,X2,X3) = 0 [le](X1,X2) = 2.X1 + 2.X2 [minus](X1,X2) = X1 [0] = 2 [fSNonEmpty] = 0 [false] = 2 [s](X) = 2.X + 2 [true] = 2 [GCD](X1,X2) = 2.X1 + X2 + 1 [IF_GCD](X1,X2,X3) = X2 + X3 + 2 [LE](X1,X2) = 0 [MINUS](X1,X2) = 0 Problem 1.3: SCC Processor: -> Pairs: GCD(s(s(y:S)),s(s(x:S))) -> IF_GCD(le(x:S,y:S),s(s(y:S)),s(s(x:S))) GCD(s(y:S),s(0)) -> IF_GCD(ttrue,s(y:S),s(0)) IF_GCD(ffalse,s(y:S),s(x:S)) -> GCD(minus(x:S,y:S),s(y:S)) IF_GCD(ttrue,s(x:S),s(y:S)) -> GCD(minus(x:S,y:S),s(y:S)) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: GCD(s(s(y:S)),s(s(x:S))) -> IF_GCD(le(x:S,y:S),s(s(y:S)),s(s(x:S))) GCD(s(y:S),s(0)) -> IF_GCD(ttrue,s(y:S),s(0)) IF_GCD(ffalse,s(y:S),s(x:S)) -> GCD(minus(x:S,y:S),s(y:S)) IF_GCD(ttrue,s(x:S),s(y:S)) -> GCD(minus(x:S,y:S),s(y:S)) ->->-> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S Problem 1.3: Reduction Pairs Processor: -> Pairs: GCD(s(s(y:S)),s(s(x:S))) -> IF_GCD(le(x:S,y:S),s(s(y:S)),s(s(x:S))) GCD(s(y:S),s(0)) -> IF_GCD(ttrue,s(y:S),s(0)) IF_GCD(ffalse,s(y:S),s(x:S)) -> GCD(minus(x:S,y:S),s(y:S)) IF_GCD(ttrue,s(x:S),s(y:S)) -> GCD(minus(x:S,y:S),s(y:S)) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S -> Usable rules: le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [gcd](X1,X2) = 0 [if_gcd](X1,X2,X3) = 0 [le](X1,X2) = 0 [minus](X1,X2) = X1 + 1 [0] = 2 [fSNonEmpty] = 0 [false] = 0 [s](X) = 2.X + 2 [true] = 0 [GCD](X1,X2) = 2.X1 + 2.X2 + 1 [IF_GCD](X1,X2,X3) = 2.X1 + 2.X2 + 2.X3 [LE](X1,X2) = 0 [MINUS](X1,X2) = 0 Problem 1.3: SCC Processor: -> Pairs: GCD(s(y:S),s(0)) -> IF_GCD(ttrue,s(y:S),s(0)) IF_GCD(ffalse,s(y:S),s(x:S)) -> GCD(minus(x:S,y:S),s(y:S)) IF_GCD(ttrue,s(x:S),s(y:S)) -> GCD(minus(x:S,y:S),s(y:S)) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: GCD(s(y:S),s(0)) -> IF_GCD(ttrue,s(y:S),s(0)) IF_GCD(ttrue,s(x:S),s(y:S)) -> GCD(minus(x:S,y:S),s(y:S)) ->->-> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S Problem 1.3: Reduction Pairs Processor: -> Pairs: GCD(s(y:S),s(0)) -> IF_GCD(ttrue,s(y:S),s(0)) IF_GCD(ttrue,s(x:S),s(y:S)) -> GCD(minus(x:S,y:S),s(y:S)) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S -> Usable rules: minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [gcd](X1,X2) = 0 [if_gcd](X1,X2,X3) = 0 [le](X1,X2) = 0 [minus](X1,X2) = X1 [0] = 2 [fSNonEmpty] = 0 [false] = 0 [s](X) = 2.X + 1 [true] = 2 [GCD](X1,X2) = 2.X1 + 2.X2 + 2 [IF_GCD](X1,X2,X3) = X2 + 2.X3 + 2 [LE](X1,X2) = 0 [MINUS](X1,X2) = 0 Problem 1.3: SCC Processor: -> Pairs: IF_GCD(ttrue,s(x:S),s(y:S)) -> GCD(minus(x:S,y:S),s(y:S)) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,x:S,y:S) -> gcd(minus(y:S,x:S),x:S) if_gcd(ttrue,x:S,y:S) -> gcd(minus(x:S,y:S),y:S) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,x:S) -> 0 minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ->Strongly Connected Components: There is no strongly connected component The problem is finite.