NO Prover = TRS(tech=PATTERN_RULES, nb_unfoldings=unlimited, max_nb_unfolded_rules=200) ** BEGIN proof argument ** The following pattern rule was generated by the strategy presented in Sect. 3 of [Emmes, Enger, Giesl, IJCAR'12]: [iteration = 2] f(tt,Cons(tt,_0)){_0->Cons(tt,_0)}^n{_0->nil} -> f(tt,Cons(tt,Cons(tt,_0))){_0->Cons(tt,_0)}^n{_0->nil} We apply Theorem 8 of [Emmes, Enger, Giesl, IJCAR'12] on this rule with m = 1, b = 1, pi = epsilon, sigma' = {} and mu' = {}. Hence the term f(tt,Cons(tt,nil)), obtained from instantiating n with 0 in the left-hand side of the rule, starts an infinite derivation w.r.t. the analyzed TRS. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## Round 1: ## DP problem: Dependency pairs = [f^#(tt,_0) -> f^#(isList(_0),Cons(tt,_0))] TRS = {f(tt,_0) -> f(isList(_0),Cons(tt,_0)), isList(Cons(tt,_0)) -> isList(_0), isList(nil) -> tt} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Too many coefficients (13)! Aborting! ## Trying with lexicographic path orders... Failed! ## Trying to prove nontermination by unfolding the dependency pairs with the rules of the TRS # Iteration 0: nontermination not detected, 1 unfolded rule generated. # Iteration 1: nontermination not detected, 5 unfolded rules generated. # Iteration 2: nontermination detected, 14 unfolded rules generated. Here is the successful unfolding. Let IR be the TRS under analysis. IR contains the dependency pair f^#(tt,_0) -> f^#(isList(_0),Cons(tt,_0)). We apply (I) of [Emmes, Enger, Giesl, IJCAR'12] to this dependency pair. ==> P0 = f^#(tt,_0){}^n{} -> f^#(isList(_0),Cons(tt,_0)){}^n{} is in U_IR^0. We apply (VI) of [Emmes, Enger, Giesl, IJCAR'12] to this pattern rule at position [0] using the pattern rule isList(Cons(tt,_0)){_0->Cons(tt,_0)}^n{_0->_1} -> isList(_1){_0->Cons(tt,_0)}^n{_0->_1} obtained from IR. ==> P1 = f^#(tt,Cons(tt,_0)){_0->Cons(tt,_0)}^n{_0->_1} -> f^#(isList(_1),Cons(tt,Cons(tt,_0))){_0->Cons(tt,_0)}^n{_0->_1} is in U_IR^1. We apply (V) + (IX) of [Emmes, Enger, Giesl, IJCAR'12] to this pattern rule at position [0] using the rule isList(nil) -> tt of IR. ==> P2 = f^#(tt,Cons(tt,_0)){_0->Cons(tt,_0)}^n{_0->nil} -> f^#(tt,Cons(tt,Cons(tt,_0))){_0->Cons(tt,_0)}^n{_0->nil} is in U_IR^2. This DP problem is infinite. ** END proof description ** Proof stopped at iteration 2 Number of unfolded rules generated by this proof = 20 Number of unfolded rules generated by all the parallel proofs = 61