YES Problem 1: (VAR v_NonEmpty:S x:S y:S) (RULES f(s(x:S),y:S,y:S) -> f(y:S,x:S,s(x:S)) g(x:S,y:S) -> x:S g(x:S,y:S) -> y:S ) Problem 1: Dependency Pairs Processor: -> Pairs: F(s(x:S),y:S,y:S) -> F(y:S,x:S,s(x:S)) -> Rules: f(s(x:S),y:S,y:S) -> f(y:S,x:S,s(x:S)) g(x:S,y:S) -> x:S g(x:S,y:S) -> y:S Problem 1: SCC Processor: -> Pairs: F(s(x:S),y:S,y:S) -> F(y:S,x:S,s(x:S)) -> Rules: f(s(x:S),y:S,y:S) -> f(y:S,x:S,s(x:S)) g(x:S,y:S) -> x:S g(x:S,y:S) -> y:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: F(s(x:S),y:S,y:S) -> F(y:S,x:S,s(x:S)) ->->-> Rules: f(s(x:S),y:S,y:S) -> f(y:S,x:S,s(x:S)) g(x:S,y:S) -> x:S g(x:S,y:S) -> y:S Problem 1: Reduction Pair Processor: -> Pairs: F(s(x:S),y:S,y:S) -> F(y:S,x:S,s(x:S)) -> Rules: f(s(x:S),y:S,y:S) -> f(y:S,x:S,s(x:S)) g(x:S,y:S) -> x:S g(x:S,y:S) -> y:S -> Usable rules: Empty ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [s](X) = 2.X + 2 [F](X1,X2,X3) = 2.X1 + 2.X2 + X3 Problem 1: SCC Processor: -> Pairs: Empty -> Rules: f(s(x:S),y:S,y:S) -> f(y:S,x:S,s(x:S)) g(x:S,y:S) -> x:S g(x:S,y:S) -> y:S ->Strongly Connected Components: There is no strongly connected component The problem is finite.