YES Problem: f(a(),b()) -> f(a(),c()) f(c(),d()) -> f(b(),d()) Proof: Extended Uncurrying Processor: application symbol: f symbol table: d ==> d0/0 c ==> c0/0 c1/1 b ==> b0/0 b1/1 a ==> a0/0 a1/1 uncurry-rules: f(a0(),x0) -> a1(x0) f(b0(),x2) -> b1(x2) f(c0(),x4) -> c1(x4) eta-rules: problem: a1(b0()) -> a1(c0()) c1(d0()) -> b1(d0()) f(a0(),x0) -> a1(x0) f(b0(),x2) -> b1(x2) f(c0(),x4) -> c1(x4) Matrix Interpretation Processor: dim=3 interpretation: [1 0 0] [b1](x0) = [0 0 1]x0 [0 0 0] , [0] [a0] = [0] [0], [1 1 1] [c1](x0) = [0 0 1]x0 [1 0 0] , [0] [b0] = [1] [0], [0] [d0] = [0] [1], [0] [c0] = [0] [0], [1 1 0] [a1](x0) = [0 0 0]x0 [0 0 0] , [1 0 0] [1 1 1] [1] [f](x0, x1) = [0 0 0]x0 + [0 0 1]x1 + [0] [0 0 0] [1 0 0] [0] orientation: [1] [0] a1(b0()) = [0] >= [0] = a1(c0()) [0] [0] [1] [0] c1(d0()) = [1] >= [1] = b1(d0()) [0] [0] [1 1 1] [1] [1 1 0] f(a0(),x0) = [0 0 1]x0 + [0] >= [0 0 0]x0 = a1(x0) [1 0 0] [0] [0 0 0] [1 1 1] [1] [1 0 0] f(b0(),x2) = [0 0 1]x2 + [0] >= [0 0 1]x2 = b1(x2) [1 0 0] [0] [0 0 0] [1 1 1] [1] [1 1 1] f(c0(),x4) = [0 0 1]x4 + [0] >= [0 0 1]x4 = c1(x4) [1 0 0] [0] [1 0 0] problem: Qed