YES Problem 1: (VAR v_NonEmpty:S x:S y:S z:S) (RULES f(.(.(x:S,y:S),z:S)) -> f(.(x:S,.(y:S,z:S))) f(.(nil,y:S)) -> .(nil,f(y:S)) f(nil) -> nil g(.(x:S,.(y:S,z:S))) -> g(.(.(x:S,y:S),z:S)) g(.(x:S,nil)) -> .(g(x:S),nil) g(nil) -> nil ) Problem 1: Innermost Equivalent Processor: -> Rules: f(.(.(x:S,y:S),z:S)) -> f(.(x:S,.(y:S,z:S))) f(.(nil,y:S)) -> .(nil,f(y:S)) f(nil) -> nil g(.(x:S,.(y:S,z:S))) -> g(.(.(x:S,y:S),z:S)) g(.(x:S,nil)) -> .(g(x:S),nil) g(nil) -> nil -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: F(.(.(x:S,y:S),z:S)) -> F(.(x:S,.(y:S,z:S))) F(.(nil,y:S)) -> F(y:S) G(.(x:S,.(y:S,z:S))) -> G(.(.(x:S,y:S),z:S)) G(.(x:S,nil)) -> G(x:S) -> Rules: f(.(.(x:S,y:S),z:S)) -> f(.(x:S,.(y:S,z:S))) f(.(nil,y:S)) -> .(nil,f(y:S)) f(nil) -> nil g(.(x:S,.(y:S,z:S))) -> g(.(.(x:S,y:S),z:S)) g(.(x:S,nil)) -> .(g(x:S),nil) g(nil) -> nil Problem 1: SCC Processor: -> Pairs: F(.(.(x:S,y:S),z:S)) -> F(.(x:S,.(y:S,z:S))) F(.(nil,y:S)) -> F(y:S) G(.(x:S,.(y:S,z:S))) -> G(.(.(x:S,y:S),z:S)) G(.(x:S,nil)) -> G(x:S) -> Rules: f(.(.(x:S,y:S),z:S)) -> f(.(x:S,.(y:S,z:S))) f(.(nil,y:S)) -> .(nil,f(y:S)) f(nil) -> nil g(.(x:S,.(y:S,z:S))) -> g(.(.(x:S,y:S),z:S)) g(.(x:S,nil)) -> .(g(x:S),nil) g(nil) -> nil ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: G(.(x:S,.(y:S,z:S))) -> G(.(.(x:S,y:S),z:S)) G(.(x:S,nil)) -> G(x:S) ->->-> Rules: f(.(.(x:S,y:S),z:S)) -> f(.(x:S,.(y:S,z:S))) f(.(nil,y:S)) -> .(nil,f(y:S)) f(nil) -> nil g(.(x:S,.(y:S,z:S))) -> g(.(.(x:S,y:S),z:S)) g(.(x:S,nil)) -> .(g(x:S),nil) g(nil) -> nil ->->Cycle: ->->-> Pairs: F(.(.(x:S,y:S),z:S)) -> F(.(x:S,.(y:S,z:S))) F(.(nil,y:S)) -> F(y:S) ->->-> Rules: f(.(.(x:S,y:S),z:S)) -> f(.(x:S,.(y:S,z:S))) f(.(nil,y:S)) -> .(nil,f(y:S)) f(nil) -> nil g(.(x:S,.(y:S,z:S))) -> g(.(.(x:S,y:S),z:S)) g(.(x:S,nil)) -> .(g(x:S),nil) g(nil) -> nil The problem is decomposed in 2 subproblems. Problem 1.1: Reduction Pairs Processor: -> Pairs: G(.(x:S,.(y:S,z:S))) -> G(.(.(x:S,y:S),z:S)) G(.(x:S,nil)) -> G(x:S) -> Rules: f(.(.(x:S,y:S),z:S)) -> f(.(x:S,.(y:S,z:S))) f(.(nil,y:S)) -> .(nil,f(y:S)) f(nil) -> nil g(.(x:S,.(y:S,z:S))) -> g(.(.(x:S,y:S),z:S)) g(.(x:S,nil)) -> .(g(x:S),nil) g(nil) -> nil -> Usable rules: Empty ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [f](X) = 0 [g](X) = 0 [.](X1,X2) = X1 + 2.X2 + 2 [fSNonEmpty] = 0 [nil] = 0 [F](X) = 0 [G](X) = X Problem 1.1: SCC Processor: -> Pairs: G(.(x:S,nil)) -> G(x:S) -> Rules: f(.(.(x:S,y:S),z:S)) -> f(.(x:S,.(y:S,z:S))) f(.(nil,y:S)) -> .(nil,f(y:S)) f(nil) -> nil g(.(x:S,.(y:S,z:S))) -> g(.(.(x:S,y:S),z:S)) g(.(x:S,nil)) -> .(g(x:S),nil) g(nil) -> nil ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: G(.(x:S,nil)) -> G(x:S) ->->-> Rules: f(.(.(x:S,y:S),z:S)) -> f(.(x:S,.(y:S,z:S))) f(.(nil,y:S)) -> .(nil,f(y:S)) f(nil) -> nil g(.(x:S,.(y:S,z:S))) -> g(.(.(x:S,y:S),z:S)) g(.(x:S,nil)) -> .(g(x:S),nil) g(nil) -> nil Problem 1.1: Subterm Processor: -> Pairs: G(.(x:S,nil)) -> G(x:S) -> Rules: f(.(.(x:S,y:S),z:S)) -> f(.(x:S,.(y:S,z:S))) f(.(nil,y:S)) -> .(nil,f(y:S)) f(nil) -> nil g(.(x:S,.(y:S,z:S))) -> g(.(.(x:S,y:S),z:S)) g(.(x:S,nil)) -> .(g(x:S),nil) g(nil) -> nil ->Projection: pi(G) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: f(.(.(x:S,y:S),z:S)) -> f(.(x:S,.(y:S,z:S))) f(.(nil,y:S)) -> .(nil,f(y:S)) f(nil) -> nil g(.(x:S,.(y:S,z:S))) -> g(.(.(x:S,y:S),z:S)) g(.(x:S,nil)) -> .(g(x:S),nil) g(nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Reduction Pairs Processor: -> Pairs: F(.(.(x:S,y:S),z:S)) -> F(.(x:S,.(y:S,z:S))) F(.(nil,y:S)) -> F(y:S) -> Rules: f(.(.(x:S,y:S),z:S)) -> f(.(x:S,.(y:S,z:S))) f(.(nil,y:S)) -> .(nil,f(y:S)) f(nil) -> nil g(.(x:S,.(y:S,z:S))) -> g(.(.(x:S,y:S),z:S)) g(.(x:S,nil)) -> .(g(x:S),nil) g(nil) -> nil -> Usable rules: Empty ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [f](X) = 0 [g](X) = 0 [.](X1,X2) = 2.X1 + X2 + 2 [fSNonEmpty] = 0 [nil] = 0 [F](X) = 2.X [G](X) = 0 Problem 1.2: SCC Processor: -> Pairs: F(.(nil,y:S)) -> F(y:S) -> Rules: f(.(.(x:S,y:S),z:S)) -> f(.(x:S,.(y:S,z:S))) f(.(nil,y:S)) -> .(nil,f(y:S)) f(nil) -> nil g(.(x:S,.(y:S,z:S))) -> g(.(.(x:S,y:S),z:S)) g(.(x:S,nil)) -> .(g(x:S),nil) g(nil) -> nil ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: F(.(nil,y:S)) -> F(y:S) ->->-> Rules: f(.(.(x:S,y:S),z:S)) -> f(.(x:S,.(y:S,z:S))) f(.(nil,y:S)) -> .(nil,f(y:S)) f(nil) -> nil g(.(x:S,.(y:S,z:S))) -> g(.(.(x:S,y:S),z:S)) g(.(x:S,nil)) -> .(g(x:S),nil) g(nil) -> nil Problem 1.2: Subterm Processor: -> Pairs: F(.(nil,y:S)) -> F(y:S) -> Rules: f(.(.(x:S,y:S),z:S)) -> f(.(x:S,.(y:S,z:S))) f(.(nil,y:S)) -> .(nil,f(y:S)) f(nil) -> nil g(.(x:S,.(y:S,z:S))) -> g(.(.(x:S,y:S),z:S)) g(.(x:S,nil)) -> .(g(x:S),nil) g(nil) -> nil ->Projection: pi(F) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: f(.(.(x:S,y:S),z:S)) -> f(.(x:S,.(y:S,z:S))) f(.(nil,y:S)) -> .(nil,f(y:S)) f(nil) -> nil g(.(x:S,.(y:S,z:S))) -> g(.(.(x:S,y:S),z:S)) g(.(x:S,nil)) -> .(g(x:S),nil) g(nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite.