YES Problem 1: (VAR v_NonEmpty:S x:S y:S) (RULES -(0,y:S) -> 0 -(x:S,0) -> x:S -(x:S,s(y:S)) -> if(greater(x:S,s(y:S)),s(-(x:S,p(s(y:S)))),0) p(0) -> 0 p(s(x:S)) -> x:S ) Problem 1: Dependency Pairs Processor: -> Pairs: -#(x:S,s(y:S)) -> -#(x:S,p(s(y:S))) -#(x:S,s(y:S)) -> P(s(y:S)) -> Rules: -(0,y:S) -> 0 -(x:S,0) -> x:S -(x:S,s(y:S)) -> if(greater(x:S,s(y:S)),s(-(x:S,p(s(y:S)))),0) p(0) -> 0 p(s(x:S)) -> x:S Problem 1: SCC Processor: -> Pairs: -#(x:S,s(y:S)) -> -#(x:S,p(s(y:S))) -#(x:S,s(y:S)) -> P(s(y:S)) -> Rules: -(0,y:S) -> 0 -(x:S,0) -> x:S -(x:S,s(y:S)) -> if(greater(x:S,s(y:S)),s(-(x:S,p(s(y:S)))),0) p(0) -> 0 p(s(x:S)) -> x:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: -#(x:S,s(y:S)) -> -#(x:S,p(s(y:S))) ->->-> Rules: -(0,y:S) -> 0 -(x:S,0) -> x:S -(x:S,s(y:S)) -> if(greater(x:S,s(y:S)),s(-(x:S,p(s(y:S)))),0) p(0) -> 0 p(s(x:S)) -> x:S Problem 1: Reduction Pair Processor: -> Pairs: -#(x:S,s(y:S)) -> -#(x:S,p(s(y:S))) -> Rules: -(0,y:S) -> 0 -(x:S,0) -> x:S -(x:S,s(y:S)) -> if(greater(x:S,s(y:S)),s(-(x:S,p(s(y:S)))),0) p(0) -> 0 p(s(x:S)) -> x:S -> Usable rules: p(0) -> 0 p(s(x:S)) -> x:S ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [p](X) = 1/2.X + 1/2 [0] = 1/2 [s](X) = 2.X + 2 [-#](X1,X2) = 2.X2 Problem 1: SCC Processor: -> Pairs: Empty -> Rules: -(0,y:S) -> 0 -(x:S,0) -> x:S -(x:S,s(y:S)) -> if(greater(x:S,s(y:S)),s(-(x:S,p(s(y:S)))),0) p(0) -> 0 p(s(x:S)) -> x:S ->Strongly Connected Components: There is no strongly connected component The problem is finite.