YES Problem 1: (VAR v_NonEmpty:S x:S y:S) (RULES int(0,0) -> .(0,nil) int(0,s(y:S)) -> .(0,int(s(0),s(y:S))) int(s(x:S),0) -> nil int(s(x:S),s(y:S)) -> int_list(int(x:S,y:S)) int_list(.(x:S,y:S)) -> .(s(x:S),int_list(y:S)) int_list(nil) -> nil ) Problem 1: Innermost Equivalent Processor: -> Rules: int(0,0) -> .(0,nil) int(0,s(y:S)) -> .(0,int(s(0),s(y:S))) int(s(x:S),0) -> nil int(s(x:S),s(y:S)) -> int_list(int(x:S,y:S)) int_list(.(x:S,y:S)) -> .(s(x:S),int_list(y:S)) int_list(nil) -> nil -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: INT(0,s(y:S)) -> INT(s(0),s(y:S)) INT(s(x:S),s(y:S)) -> INT(x:S,y:S) INT(s(x:S),s(y:S)) -> INT_LIST(int(x:S,y:S)) INT_LIST(.(x:S,y:S)) -> INT_LIST(y:S) -> Rules: int(0,0) -> .(0,nil) int(0,s(y:S)) -> .(0,int(s(0),s(y:S))) int(s(x:S),0) -> nil int(s(x:S),s(y:S)) -> int_list(int(x:S,y:S)) int_list(.(x:S,y:S)) -> .(s(x:S),int_list(y:S)) int_list(nil) -> nil Problem 1: SCC Processor: -> Pairs: INT(0,s(y:S)) -> INT(s(0),s(y:S)) INT(s(x:S),s(y:S)) -> INT(x:S,y:S) INT(s(x:S),s(y:S)) -> INT_LIST(int(x:S,y:S)) INT_LIST(.(x:S,y:S)) -> INT_LIST(y:S) -> Rules: int(0,0) -> .(0,nil) int(0,s(y:S)) -> .(0,int(s(0),s(y:S))) int(s(x:S),0) -> nil int(s(x:S),s(y:S)) -> int_list(int(x:S,y:S)) int_list(.(x:S,y:S)) -> .(s(x:S),int_list(y:S)) int_list(nil) -> nil ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: INT_LIST(.(x:S,y:S)) -> INT_LIST(y:S) ->->-> Rules: int(0,0) -> .(0,nil) int(0,s(y:S)) -> .(0,int(s(0),s(y:S))) int(s(x:S),0) -> nil int(s(x:S),s(y:S)) -> int_list(int(x:S,y:S)) int_list(.(x:S,y:S)) -> .(s(x:S),int_list(y:S)) int_list(nil) -> nil ->->Cycle: ->->-> Pairs: INT(0,s(y:S)) -> INT(s(0),s(y:S)) INT(s(x:S),s(y:S)) -> INT(x:S,y:S) ->->-> Rules: int(0,0) -> .(0,nil) int(0,s(y:S)) -> .(0,int(s(0),s(y:S))) int(s(x:S),0) -> nil int(s(x:S),s(y:S)) -> int_list(int(x:S,y:S)) int_list(.(x:S,y:S)) -> .(s(x:S),int_list(y:S)) int_list(nil) -> nil The problem is decomposed in 2 subproblems. Problem 1.1: Subterm Processor: -> Pairs: INT_LIST(.(x:S,y:S)) -> INT_LIST(y:S) -> Rules: int(0,0) -> .(0,nil) int(0,s(y:S)) -> .(0,int(s(0),s(y:S))) int(s(x:S),0) -> nil int(s(x:S),s(y:S)) -> int_list(int(x:S,y:S)) int_list(.(x:S,y:S)) -> .(s(x:S),int_list(y:S)) int_list(nil) -> nil ->Projection: pi(INT_LIST) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: int(0,0) -> .(0,nil) int(0,s(y:S)) -> .(0,int(s(0),s(y:S))) int(s(x:S),0) -> nil int(s(x:S),s(y:S)) -> int_list(int(x:S,y:S)) int_list(.(x:S,y:S)) -> .(s(x:S),int_list(y:S)) int_list(nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: INT(0,s(y:S)) -> INT(s(0),s(y:S)) INT(s(x:S),s(y:S)) -> INT(x:S,y:S) -> Rules: int(0,0) -> .(0,nil) int(0,s(y:S)) -> .(0,int(s(0),s(y:S))) int(s(x:S),0) -> nil int(s(x:S),s(y:S)) -> int_list(int(x:S,y:S)) int_list(.(x:S,y:S)) -> .(s(x:S),int_list(y:S)) int_list(nil) -> nil ->Projection: pi(INT) = 2 Problem 1.2: SCC Processor: -> Pairs: INT(0,s(y:S)) -> INT(s(0),s(y:S)) -> Rules: int(0,0) -> .(0,nil) int(0,s(y:S)) -> .(0,int(s(0),s(y:S))) int(s(x:S),0) -> nil int(s(x:S),s(y:S)) -> int_list(int(x:S,y:S)) int_list(.(x:S,y:S)) -> .(s(x:S),int_list(y:S)) int_list(nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite.