YES Problem 1: (VAR v_NonEmpty:S x:S y:S) (RULES +(0,y:S) -> y:S +(s(x:S),0) -> s(x:S) +(s(x:S),s(y:S)) -> s(+(s(x:S),+(y:S,0))) ) Problem 1: Innermost Equivalent Processor: -> Rules: +(0,y:S) -> y:S +(s(x:S),0) -> s(x:S) +(s(x:S),s(y:S)) -> s(+(s(x:S),+(y:S,0))) -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: +#(s(x:S),s(y:S)) -> +#(s(x:S),+(y:S,0)) +#(s(x:S),s(y:S)) -> +#(y:S,0) -> Rules: +(0,y:S) -> y:S +(s(x:S),0) -> s(x:S) +(s(x:S),s(y:S)) -> s(+(s(x:S),+(y:S,0))) Problem 1: SCC Processor: -> Pairs: +#(s(x:S),s(y:S)) -> +#(s(x:S),+(y:S,0)) +#(s(x:S),s(y:S)) -> +#(y:S,0) -> Rules: +(0,y:S) -> y:S +(s(x:S),0) -> s(x:S) +(s(x:S),s(y:S)) -> s(+(s(x:S),+(y:S,0))) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: +#(s(x:S),s(y:S)) -> +#(s(x:S),+(y:S,0)) ->->-> Rules: +(0,y:S) -> y:S +(s(x:S),0) -> s(x:S) +(s(x:S),s(y:S)) -> s(+(s(x:S),+(y:S,0))) Problem 1: Reduction Pairs Processor: -> Pairs: +#(s(x:S),s(y:S)) -> +#(s(x:S),+(y:S,0)) -> Rules: +(0,y:S) -> y:S +(s(x:S),0) -> s(x:S) +(s(x:S),s(y:S)) -> s(+(s(x:S),+(y:S,0))) -> Usable rules: +(0,y:S) -> y:S +(s(x:S),0) -> s(x:S) +(s(x:S),s(y:S)) -> s(+(s(x:S),+(y:S,0))) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [+](X1,X2) = X1 + 2.X2 + 1 [0] = 0 [fSNonEmpty] = 0 [s](X) = X + 2 [+#](X1,X2) = 2.X2 Problem 1: SCC Processor: -> Pairs: Empty -> Rules: +(0,y:S) -> y:S +(s(x:S),0) -> s(x:S) +(s(x:S),s(y:S)) -> s(+(s(x:S),+(y:S,0))) ->Strongly Connected Components: There is no strongly connected component The problem is finite.