YES Problem 1: (VAR v_NonEmpty:S x:S y:S) (RULES -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S leq(0,y:S) -> ttrue leq(s(x:S),0) -> ffalse leq(s(x:S),s(y:S)) -> leq(x:S,y:S) mod(0,y:S) -> 0 mod(s(x:S),0) -> 0 mod(s(x:S),s(y:S)) -> if(leq(y:S,x:S),mod(-(s(x:S),s(y:S)),s(y:S)),s(x:S)) ) Problem 1: Innermost Equivalent Processor: -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S leq(0,y:S) -> ttrue leq(s(x:S),0) -> ffalse leq(s(x:S),s(y:S)) -> leq(x:S,y:S) mod(0,y:S) -> 0 mod(s(x:S),0) -> 0 mod(s(x:S),s(y:S)) -> if(leq(y:S,x:S),mod(-(s(x:S),s(y:S)),s(y:S)),s(x:S)) -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: -#(s(x:S),s(y:S)) -> -#(x:S,y:S) LEQ(s(x:S),s(y:S)) -> LEQ(x:S,y:S) MOD(s(x:S),s(y:S)) -> -#(s(x:S),s(y:S)) MOD(s(x:S),s(y:S)) -> IF(leq(y:S,x:S),mod(-(s(x:S),s(y:S)),s(y:S)),s(x:S)) MOD(s(x:S),s(y:S)) -> LEQ(y:S,x:S) MOD(s(x:S),s(y:S)) -> MOD(-(s(x:S),s(y:S)),s(y:S)) -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S leq(0,y:S) -> ttrue leq(s(x:S),0) -> ffalse leq(s(x:S),s(y:S)) -> leq(x:S,y:S) mod(0,y:S) -> 0 mod(s(x:S),0) -> 0 mod(s(x:S),s(y:S)) -> if(leq(y:S,x:S),mod(-(s(x:S),s(y:S)),s(y:S)),s(x:S)) Problem 1: SCC Processor: -> Pairs: -#(s(x:S),s(y:S)) -> -#(x:S,y:S) LEQ(s(x:S),s(y:S)) -> LEQ(x:S,y:S) MOD(s(x:S),s(y:S)) -> -#(s(x:S),s(y:S)) MOD(s(x:S),s(y:S)) -> IF(leq(y:S,x:S),mod(-(s(x:S),s(y:S)),s(y:S)),s(x:S)) MOD(s(x:S),s(y:S)) -> LEQ(y:S,x:S) MOD(s(x:S),s(y:S)) -> MOD(-(s(x:S),s(y:S)),s(y:S)) -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S leq(0,y:S) -> ttrue leq(s(x:S),0) -> ffalse leq(s(x:S),s(y:S)) -> leq(x:S,y:S) mod(0,y:S) -> 0 mod(s(x:S),0) -> 0 mod(s(x:S),s(y:S)) -> if(leq(y:S,x:S),mod(-(s(x:S),s(y:S)),s(y:S)),s(x:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: LEQ(s(x:S),s(y:S)) -> LEQ(x:S,y:S) ->->-> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S leq(0,y:S) -> ttrue leq(s(x:S),0) -> ffalse leq(s(x:S),s(y:S)) -> leq(x:S,y:S) mod(0,y:S) -> 0 mod(s(x:S),0) -> 0 mod(s(x:S),s(y:S)) -> if(leq(y:S,x:S),mod(-(s(x:S),s(y:S)),s(y:S)),s(x:S)) ->->Cycle: ->->-> Pairs: -#(s(x:S),s(y:S)) -> -#(x:S,y:S) ->->-> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S leq(0,y:S) -> ttrue leq(s(x:S),0) -> ffalse leq(s(x:S),s(y:S)) -> leq(x:S,y:S) mod(0,y:S) -> 0 mod(s(x:S),0) -> 0 mod(s(x:S),s(y:S)) -> if(leq(y:S,x:S),mod(-(s(x:S),s(y:S)),s(y:S)),s(x:S)) ->->Cycle: ->->-> Pairs: MOD(s(x:S),s(y:S)) -> MOD(-(s(x:S),s(y:S)),s(y:S)) ->->-> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S leq(0,y:S) -> ttrue leq(s(x:S),0) -> ffalse leq(s(x:S),s(y:S)) -> leq(x:S,y:S) mod(0,y:S) -> 0 mod(s(x:S),0) -> 0 mod(s(x:S),s(y:S)) -> if(leq(y:S,x:S),mod(-(s(x:S),s(y:S)),s(y:S)),s(x:S)) The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: LEQ(s(x:S),s(y:S)) -> LEQ(x:S,y:S) -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S leq(0,y:S) -> ttrue leq(s(x:S),0) -> ffalse leq(s(x:S),s(y:S)) -> leq(x:S,y:S) mod(0,y:S) -> 0 mod(s(x:S),0) -> 0 mod(s(x:S),s(y:S)) -> if(leq(y:S,x:S),mod(-(s(x:S),s(y:S)),s(y:S)),s(x:S)) ->Projection: pi(LEQ) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S leq(0,y:S) -> ttrue leq(s(x:S),0) -> ffalse leq(s(x:S),s(y:S)) -> leq(x:S,y:S) mod(0,y:S) -> 0 mod(s(x:S),0) -> 0 mod(s(x:S),s(y:S)) -> if(leq(y:S,x:S),mod(-(s(x:S),s(y:S)),s(y:S)),s(x:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: -#(s(x:S),s(y:S)) -> -#(x:S,y:S) -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S leq(0,y:S) -> ttrue leq(s(x:S),0) -> ffalse leq(s(x:S),s(y:S)) -> leq(x:S,y:S) mod(0,y:S) -> 0 mod(s(x:S),0) -> 0 mod(s(x:S),s(y:S)) -> if(leq(y:S,x:S),mod(-(s(x:S),s(y:S)),s(y:S)),s(x:S)) ->Projection: pi(-#) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S leq(0,y:S) -> ttrue leq(s(x:S),0) -> ffalse leq(s(x:S),s(y:S)) -> leq(x:S,y:S) mod(0,y:S) -> 0 mod(s(x:S),0) -> 0 mod(s(x:S),s(y:S)) -> if(leq(y:S,x:S),mod(-(s(x:S),s(y:S)),s(y:S)),s(x:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Narrowing Processor: -> Pairs: MOD(s(x:S),s(y:S)) -> MOD(-(s(x:S),s(y:S)),s(y:S)) -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S leq(0,y:S) -> ttrue leq(s(x:S),0) -> ffalse leq(s(x:S),s(y:S)) -> leq(x:S,y:S) mod(0,y:S) -> 0 mod(s(x:S),0) -> 0 mod(s(x:S),s(y:S)) -> if(leq(y:S,x:S),mod(-(s(x:S),s(y:S)),s(y:S)),s(x:S)) ->Narrowed Pairs: ->->Original Pair: MOD(s(x:S),s(y:S)) -> MOD(-(s(x:S),s(y:S)),s(y:S)) ->-> Narrowed pairs: MOD(s(x:S),s(y:S)) -> MOD(-(x:S,y:S),s(y:S)) Problem 1.3: SCC Processor: -> Pairs: MOD(s(x:S),s(y:S)) -> MOD(-(x:S,y:S),s(y:S)) -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S leq(0,y:S) -> ttrue leq(s(x:S),0) -> ffalse leq(s(x:S),s(y:S)) -> leq(x:S,y:S) mod(0,y:S) -> 0 mod(s(x:S),0) -> 0 mod(s(x:S),s(y:S)) -> if(leq(y:S,x:S),mod(-(s(x:S),s(y:S)),s(y:S)),s(x:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: MOD(s(x:S),s(y:S)) -> MOD(-(x:S,y:S),s(y:S)) ->->-> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S leq(0,y:S) -> ttrue leq(s(x:S),0) -> ffalse leq(s(x:S),s(y:S)) -> leq(x:S,y:S) mod(0,y:S) -> 0 mod(s(x:S),0) -> 0 mod(s(x:S),s(y:S)) -> if(leq(y:S,x:S),mod(-(s(x:S),s(y:S)),s(y:S)),s(x:S)) Problem 1.3: Reduction Pairs Processor: -> Pairs: MOD(s(x:S),s(y:S)) -> MOD(-(x:S,y:S),s(y:S)) -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S leq(0,y:S) -> ttrue leq(s(x:S),0) -> ffalse leq(s(x:S),s(y:S)) -> leq(x:S,y:S) mod(0,y:S) -> 0 mod(s(x:S),0) -> 0 mod(s(x:S),s(y:S)) -> if(leq(y:S,x:S),mod(-(s(x:S),s(y:S)),s(y:S)),s(x:S)) -> Usable rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [-](X1,X2) = 2.X1 + 1 [if](X1,X2,X3) = 0 [leq](X1,X2) = 0 [mod](X1,X2) = 0 [0] = 0 [fSNonEmpty] = 0 [false] = 0 [s](X) = 2.X + 2 [true] = 0 [-#](X1,X2) = 0 [IF](X1,X2,X3) = 0 [LEQ](X1,X2) = 0 [MOD](X1,X2) = 2.X1 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S leq(0,y:S) -> ttrue leq(s(x:S),0) -> ffalse leq(s(x:S),s(y:S)) -> leq(x:S,y:S) mod(0,y:S) -> 0 mod(s(x:S),0) -> 0 mod(s(x:S),s(y:S)) -> if(leq(y:S,x:S),mod(-(s(x:S),s(y:S)),s(y:S)),s(x:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite.