YES Problem 1: (VAR v_NonEmpty:S x:S) (RULES f(x:S,f(a,a)) -> f(f(f(a,a),a),f(a,x:S)) ) Problem 1: Innermost Equivalent Processor: -> Rules: f(x:S,f(a,a)) -> f(f(f(a,a),a),f(a,x:S)) -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: F(x:S,f(a,a)) -> F(f(f(a,a),a),f(a,x:S)) F(x:S,f(a,a)) -> F(a,x:S) -> Rules: f(x:S,f(a,a)) -> f(f(f(a,a),a),f(a,x:S)) Problem 1: SCC Processor: -> Pairs: F(x:S,f(a,a)) -> F(f(f(a,a),a),f(a,x:S)) F(x:S,f(a,a)) -> F(a,x:S) -> Rules: f(x:S,f(a,a)) -> f(f(f(a,a),a),f(a,x:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: F(x:S,f(a,a)) -> F(f(f(a,a),a),f(a,x:S)) F(x:S,f(a,a)) -> F(a,x:S) ->->-> Rules: f(x:S,f(a,a)) -> f(f(f(a,a),a),f(a,x:S)) Problem 1: Reduction Pairs Processor: -> Pairs: F(x:S,f(a,a)) -> F(f(f(a,a),a),f(a,x:S)) F(x:S,f(a,a)) -> F(a,x:S) -> Rules: f(x:S,f(a,a)) -> f(f(f(a,a),a),f(a,x:S)) -> Usable rules: f(x:S,f(a,a)) -> f(f(f(a,a),a),f(a,x:S)) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 2 ->Bound: 1 ->Interpretation: [f](X1,X2) = [0 0;1 0].X1 + [0 0;1 0].X2 [a] = [1;0] [fSNonEmpty] = 0 [F](X1,X2) = [1 1;1 1].X1 + [1 1;1 1].X2 Problem 1: SCC Processor: -> Pairs: F(x:S,f(a,a)) -> F(f(f(a,a),a),f(a,x:S)) -> Rules: f(x:S,f(a,a)) -> f(f(f(a,a),a),f(a,x:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: F(x:S,f(a,a)) -> F(f(f(a,a),a),f(a,x:S)) ->->-> Rules: f(x:S,f(a,a)) -> f(f(f(a,a),a),f(a,x:S)) Problem 1: Reduction Pairs Processor: -> Pairs: F(x:S,f(a,a)) -> F(f(f(a,a),a),f(a,x:S)) -> Rules: f(x:S,f(a,a)) -> f(f(f(a,a),a),f(a,x:S)) -> Usable rules: f(x:S,f(a,a)) -> f(f(f(a,a),a),f(a,x:S)) ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 4 ->Interpretation: [f](X1,X2) = 1/4.X1 + 1/2.X2 [a] = 1/4 [fSNonEmpty] = 0 [F](X1,X2) = X1 + 3/2.X2 Problem 1: SCC Processor: -> Pairs: Empty -> Rules: f(x:S,f(a,a)) -> f(f(f(a,a),a),f(a,x:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite.