YES Problem: f(a(),f(b(),f(a(),x))) -> f(a(),f(b(),f(b(),f(a(),x)))) f(b(),f(b(),f(b(),x))) -> f(b(),f(b(),x)) Proof: Extended Uncurrying Processor: application symbol: f symbol table: b ==> b0/0 b1/1 a ==> a0/0 a1/1 uncurry-rules: f(a0(),x1) -> a1(x1) f(b0(),x3) -> b1(x3) eta-rules: problem: a1(b1(a1(x))) -> a1(b1(b1(a1(x)))) b1(b1(b1(x))) -> b1(b1(x)) f(a0(),x1) -> a1(x1) f(b0(),x3) -> b1(x3) Matrix Interpretation Processor: dim=3 interpretation: [1 0 1] [0] [a1](x0) = [0 1 0]x0 + [1] [1 0 0] [0], [0] [a0] = [0] [0], [0] [b0] = [0] [0], [1 0 0] [b1](x0) = [0 0 0]x0 [0 1 0] , [1 0 0] [1 1 1] [1] [f](x0, x1) = [0 0 0]x0 + [0 1 1]x1 + [1] [0 0 0] [1 1 0] [1] orientation: [1 1 1] [1] [1 0 1] [0] a1(b1(a1(x))) = [0 0 0]x + [1] >= [0 0 0]x + [1] = a1(b1(b1(a1(x)))) [1 0 1] [0] [1 0 1] [0] [1 0 0] [1 0 0] b1(b1(b1(x))) = [0 0 0]x >= [0 0 0]x = b1(b1(x)) [0 0 0] [0 0 0] [1 1 1] [1] [1 0 1] [0] f(a0(),x1) = [0 1 1]x1 + [1] >= [0 1 0]x1 + [1] = a1(x1) [1 1 0] [1] [1 0 0] [0] [1 1 1] [1] [1 0 0] f(b0(),x3) = [0 1 1]x3 + [1] >= [0 0 0]x3 = b1(x3) [1 1 0] [1] [0 1 0] problem: b1(b1(b1(x))) -> b1(b1(x)) Matrix Interpretation Processor: dim=3 interpretation: [1 1 0] [0] [b1](x0) = [0 0 1]x0 + [0] [0 0 0] [1] orientation: [1 1 1] [1] [1 1 1] [0] b1(b1(b1(x))) = [0 0 0]x + [1] >= [0 0 0]x + [1] = b1(b1(x)) [0 0 0] [1] [0 0 0] [1] problem: Qed