YES Problem: f(f(a(),x),a()) -> f(f(f(a(),a()),f(x,a())),a()) Proof: Extended Uncurrying Processor: application symbol: f symbol table: a ==> a0/0 a1/1 a2/2 a3/3 uncurry-rules: f(a2(x2,x3),x4) -> a3(x2,x3,x4) f(a1(x2),x3) -> a2(x2,x3) f(a0(),x2) -> a1(x2) eta-rules: f(f(f(a(),x),a()),x1) -> f(f(f(f(a(),a()),f(x,a())),a()),x1) problem: a2(x,a0()) -> a3(a0(),f(x,a0()),a0()) a3(x,a0(),x1) -> f(a3(a0(),f(x,a0()),a0()),x1) f(a2(x2,x3),x4) -> a3(x2,x3,x4) f(a1(x2),x3) -> a2(x2,x3) f(a0(),x2) -> a1(x2) Matrix Interpretation Processor: dim=3 interpretation: [1 0 1] [1 0 0] [a2](x0, x1) = [0 0 0]x0 + [0 0 0]x1 [0 0 0] [0 0 1] , [1 0 1] [1 0 1] [f](x0, x1) = [1 0 0]x0 + [0 0 0]x1 [0 1 0] [0 0 1] , [1 0 1] [0] [a1](x0) = [0 0 0]x0 + [0] [0 0 0] [1], [1 0 1] [1 0 0] [1 0 1] [a3](x0, x1, x2) = [1 0 1]x0 + [0 0 0]x1 + [0 0 0]x2 [0 0 0] [0 0 0] [0 0 1] , [0] [a0] = [1] [0] orientation: [1 0 1] [1 0 1] a2(x,a0()) = [0 0 0]x >= [0 0 0]x = a3(a0(),f(x,a0()),a0()) [0 0 0] [0 0 0] [1 0 1] [1 0 1] [1 0 1] [1 0 1] a3(x,a0(),x1) = [1 0 1]x + [0 0 0]x1 >= [1 0 1]x + [0 0 0]x1 = f(a3(a0(),f(x,a0()),a0()),x1) [0 0 0] [0 0 1] [0 0 0] [0 0 1] [1 0 1] [1 0 1] [1 0 1] [1 0 1] [1 0 0] [1 0 1] f(a2(x2,x3),x4) = [1 0 1]x2 + [1 0 0]x3 + [0 0 0]x4 >= [1 0 1]x2 + [0 0 0]x3 + [0 0 0]x4 = a3(x2,x3,x4) [0 0 0] [0 0 0] [0 0 1] [0 0 0] [0 0 0] [0 0 1] [1 0 1] [1 0 1] [1] [1 0 1] [1 0 0] f(a1(x2),x3) = [1 0 1]x2 + [0 0 0]x3 + [0] >= [0 0 0]x2 + [0 0 0]x3 = a2(x2,x3) [0 0 0] [0 0 1] [0] [0 0 0] [0 0 1] [1 0 1] [0] [1 0 1] [0] f(a0(),x2) = [0 0 0]x2 + [0] >= [0 0 0]x2 + [0] = a1(x2) [0 0 1] [1] [0 0 0] [1] problem: a2(x,a0()) -> a3(a0(),f(x,a0()),a0()) a3(x,a0(),x1) -> f(a3(a0(),f(x,a0()),a0()),x1) f(a2(x2,x3),x4) -> a3(x2,x3,x4) f(a0(),x2) -> a1(x2) Matrix Interpretation Processor: dim=3 interpretation: [1 1 0] [1 1 1] [1] [a2](x0, x1) = [1 0 0]x0 + [0 0 0]x1 + [1] [0 0 0] [0 0 0] [1], [1 0 0] [1 0 0] [f](x0, x1) = [1 0 0]x0 + [0 0 0]x1 [0 1 0] [0 0 0] , [1 0 0] [a1](x0) = [0 0 0]x0 [0 0 0] , [1 1 0] [1 0 1] [1 0 0] [0] [a3](x0, x1, x2) = [1 1 0]x0 + [0 1 0]x1 + [0 0 0]x2 + [1] [1 0 0] [0 0 0] [0 0 0] [1], [0] [a0] = [0] [0] orientation: [1 1 0] [1] [1 1 0] [0] a2(x,a0()) = [1 0 0]x + [1] >= [1 0 0]x + [1] = a3(a0(),f(x,a0()),a0()) [0 0 0] [1] [0 0 0] [1] [1 1 0] [1 0 0] [0] [1 1 0] [1 0 0] [0] a3(x,a0(),x1) = [1 1 0]x + [0 0 0]x1 + [1] >= [1 1 0]x + [0 0 0]x1 + [0] = f(a3(a0(),f(x,a0()),a0()),x1) [1 0 0] [0 0 0] [1] [1 0 0] [0 0 0] [1] [1 1 0] [1 1 1] [1 0 0] [1] [1 1 0] [1 0 1] [1 0 0] [0] f(a2(x2,x3),x4) = [1 1 0]x2 + [1 1 1]x3 + [0 0 0]x4 + [1] >= [1 1 0]x2 + [0 1 0]x3 + [0 0 0]x4 + [1] = a3(x2,x3,x4) [1 0 0] [0 0 0] [0 0 0] [1] [1 0 0] [0 0 0] [0 0 0] [1] [1 0 0] [1 0 0] f(a0(),x2) = [0 0 0]x2 >= [0 0 0]x2 = a1(x2) [0 0 0] [0 0 0] problem: a3(x,a0(),x1) -> f(a3(a0(),f(x,a0()),a0()),x1) f(a0(),x2) -> a1(x2) Matrix Interpretation Processor: dim=3 interpretation: [1 0 0] [1 0 0] [f](x0, x1) = [0 0 0]x0 + [0 0 1]x1 [0 0 0] [0 0 0] , [1 0 0] [a1](x0) = [0 0 0]x0 [0 0 0] , [1 1 0] [1 0 1] [1 0 0] [a3](x0, x1, x2) = [0 0 0]x0 + [0 0 0]x1 + [1 0 1]x2 [0 0 0] [0 0 0] [0 0 0] , [0] [a0] = [0] [1] orientation: [1 1 0] [1 0 0] [1] [1 0 0] [1 0 0] a3(x,a0(),x1) = [0 0 0]x + [1 0 1]x1 + [0] >= [0 0 0]x + [0 0 1]x1 = f(a3(a0(),f(x,a0()),a0()),x1) [0 0 0] [0 0 0] [0] [0 0 0] [0 0 0] [1 0 0] [1 0 0] f(a0(),x2) = [0 0 1]x2 >= [0 0 0]x2 = a1(x2) [0 0 0] [0 0 0] problem: f(a0(),x2) -> a1(x2) Matrix Interpretation Processor: dim=3 interpretation: [1 0 0] [1 0 0] [1] [f](x0, x1) = [0 0 0]x0 + [0 0 0]x1 + [0] [0 0 0] [0 0 0] [1], [1 0 0] [0] [a1](x0) = [0 0 0]x0 + [0] [0 0 0] [1], [0] [a0] = [0] [0] orientation: [1 0 0] [1] [1 0 0] [0] f(a0(),x2) = [0 0 0]x2 + [0] >= [0 0 0]x2 + [0] = a1(x2) [0 0 0] [1] [0 0 0] [1] problem: Qed