YES Prover = TRS(tech=PATTERN_RULES, nb_unfoldings=unlimited, max_nb_unfolded_rules=200) ** BEGIN proof argument ** All the DP problems were proved finite. As all the involved DP processors are sound, the TRS under analysis terminates. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## Round 1: ## DP problem: Dependency pairs = [f^#(s(_0),s(_1),_2,_3) -> f^#(_0,_3,_2,_3), f^#(s(_0),0,_1,_2) -> f^#(_0,_2,minus(_1,s(_0)),_2)] TRS = {perfectp(0) -> false, perfectp(s(_0)) -> f(_0,s(0),s(_0),s(_0)), f(0,_0,0,_1) -> true, f(0,_0,s(_1),_2) -> false, f(s(_0),0,_1,_2) -> f(_0,_2,minus(_1,s(_0)),_2), f(s(_0),s(_1),_2,_3) -> if(le(_0,_1),f(s(_0),minus(_1,_0),_2,_3),f(_0,_3,_2,_3))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Too many coefficients (40)! Aborting! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: perfectp > [le, f, if, 0, minus, false, true, s], f > [le, if, minus], 0 > [false, true], s > [0, minus, false, true] and the argument filtering: {le:[0, 1], perfectp:[0], f:[0, 1, 2, 3], if:[0, 1, 2], minus:[0], s:[0], f^#:[0, 1, 2, 3]} This DP problem is finite. ** END proof description ** Proof stopped at iteration 0 Number of unfolded rules generated by this proof = 0 Number of unfolded rules generated by all the parallel proofs = 250