YES Problem 1: (VAR v_NonEmpty:S x:S) (RULES g(g(x:S)) -> g(h(g(x:S))) g(h(g(x:S))) -> g(x:S) h(h(x:S)) -> h(f(h(x:S),x:S)) ) Problem 1: Dependency Pairs Processor: -> Pairs: G(g(x:S)) -> G(h(g(x:S))) G(g(x:S)) -> H(g(x:S)) H(h(x:S)) -> H(f(h(x:S),x:S)) -> Rules: g(g(x:S)) -> g(h(g(x:S))) g(h(g(x:S))) -> g(x:S) h(h(x:S)) -> h(f(h(x:S),x:S)) Problem 1: SCC Processor: -> Pairs: G(g(x:S)) -> G(h(g(x:S))) G(g(x:S)) -> H(g(x:S)) H(h(x:S)) -> H(f(h(x:S),x:S)) -> Rules: g(g(x:S)) -> g(h(g(x:S))) g(h(g(x:S))) -> g(x:S) h(h(x:S)) -> h(f(h(x:S),x:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: G(g(x:S)) -> G(h(g(x:S))) ->->-> Rules: g(g(x:S)) -> g(h(g(x:S))) g(h(g(x:S))) -> g(x:S) h(h(x:S)) -> h(f(h(x:S),x:S)) Problem 1: Reduction Pair Processor: -> Pairs: G(g(x:S)) -> G(h(g(x:S))) -> Rules: g(g(x:S)) -> g(h(g(x:S))) g(h(g(x:S))) -> g(x:S) h(h(x:S)) -> h(f(h(x:S),x:S)) -> Usable rules: g(g(x:S)) -> g(h(g(x:S))) g(h(g(x:S))) -> g(x:S) h(h(x:S)) -> h(f(h(x:S),x:S)) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [g](X) = 1 [h](X) = 0 [f](X1,X2) = 2.X1 + 2.X2 [G](X) = 2.X Problem 1: SCC Processor: -> Pairs: Empty -> Rules: g(g(x:S)) -> g(h(g(x:S))) g(h(g(x:S))) -> g(x:S) h(h(x:S)) -> h(f(h(x:S),x:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite.