YES Problem 1: (VAR v_NonEmpty:S a:S k:S x:S y:S) (RULES f(cons(a:S,k:S),y:S) -> f(y:S,k:S) f(empty,cons(a:S,k:S)) -> f(cons(a:S,k:S),k:S) f(x:S,empty) -> x:S ) Problem 1: Dependency Pairs Processor: -> Pairs: F(cons(a:S,k:S),y:S) -> F(y:S,k:S) F(empty,cons(a:S,k:S)) -> F(cons(a:S,k:S),k:S) -> Rules: f(cons(a:S,k:S),y:S) -> f(y:S,k:S) f(empty,cons(a:S,k:S)) -> f(cons(a:S,k:S),k:S) f(x:S,empty) -> x:S Problem 1: SCC Processor: -> Pairs: F(cons(a:S,k:S),y:S) -> F(y:S,k:S) F(empty,cons(a:S,k:S)) -> F(cons(a:S,k:S),k:S) -> Rules: f(cons(a:S,k:S),y:S) -> f(y:S,k:S) f(empty,cons(a:S,k:S)) -> f(cons(a:S,k:S),k:S) f(x:S,empty) -> x:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: F(cons(a:S,k:S),y:S) -> F(y:S,k:S) F(empty,cons(a:S,k:S)) -> F(cons(a:S,k:S),k:S) ->->-> Rules: f(cons(a:S,k:S),y:S) -> f(y:S,k:S) f(empty,cons(a:S,k:S)) -> f(cons(a:S,k:S),k:S) f(x:S,empty) -> x:S Problem 1: Reduction Pair Processor: -> Pairs: F(cons(a:S,k:S),y:S) -> F(y:S,k:S) F(empty,cons(a:S,k:S)) -> F(cons(a:S,k:S),k:S) -> Rules: f(cons(a:S,k:S),y:S) -> f(y:S,k:S) f(empty,cons(a:S,k:S)) -> f(cons(a:S,k:S),k:S) f(x:S,empty) -> x:S -> Usable rules: Empty ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [cons](X1,X2) = 2.X1 + 2.X2 + 2 [empty] = 0 [F](X1,X2) = X1 + 2.X2 Problem 1: SCC Processor: -> Pairs: F(empty,cons(a:S,k:S)) -> F(cons(a:S,k:S),k:S) -> Rules: f(cons(a:S,k:S),y:S) -> f(y:S,k:S) f(empty,cons(a:S,k:S)) -> f(cons(a:S,k:S),k:S) f(x:S,empty) -> x:S ->Strongly Connected Components: There is no strongly connected component The problem is finite.