YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) AAECC Innermost [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 25 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) NonInfProof [EQUIVALENT, 120 ms] (27) QDP (28) PisEmptyProof [EQUIVALENT, 0 ms] (29) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(true, x, y, z) -> f(gt(x, plus(y, z)), x, s(y), z) f(true, x, y, z) -> f(gt(x, plus(y, z)), x, y, s(z)) plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) Q is empty. ---------------------------------------- (1) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) The TRS R 2 is f(true, x, y, z) -> f(gt(x, plus(y, z)), x, s(y), z) f(true, x, y, z) -> f(gt(x, plus(y, z)), x, y, s(z)) The signature Sigma is {f_4} ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(true, x, y, z) -> f(gt(x, plus(y, z)), x, s(y), z) f(true, x, y, z) -> f(gt(x, plus(y, z)), x, y, s(z)) plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) The set Q consists of the following terms: f(true, x0, x1, x2) plus(x0, 0) plus(x0, s(x1)) gt(0, x0) gt(s(x0), 0) gt(s(x0), s(x1)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: F(true, x, y, z) -> F(gt(x, plus(y, z)), x, s(y), z) F(true, x, y, z) -> GT(x, plus(y, z)) F(true, x, y, z) -> PLUS(y, z) F(true, x, y, z) -> F(gt(x, plus(y, z)), x, y, s(z)) PLUS(n, s(m)) -> PLUS(n, m) GT(s(u), s(v)) -> GT(u, v) The TRS R consists of the following rules: f(true, x, y, z) -> f(gt(x, plus(y, z)), x, s(y), z) f(true, x, y, z) -> f(gt(x, plus(y, z)), x, y, s(z)) plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) The set Q consists of the following terms: f(true, x0, x1, x2) plus(x0, 0) plus(x0, s(x1)) gt(0, x0) gt(s(x0), 0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 2 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(u), s(v)) -> GT(u, v) The TRS R consists of the following rules: f(true, x, y, z) -> f(gt(x, plus(y, z)), x, s(y), z) f(true, x, y, z) -> f(gt(x, plus(y, z)), x, y, s(z)) plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) The set Q consists of the following terms: f(true, x0, x1, x2) plus(x0, 0) plus(x0, s(x1)) gt(0, x0) gt(s(x0), 0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(u), s(v)) -> GT(u, v) R is empty. The set Q consists of the following terms: f(true, x0, x1, x2) plus(x0, 0) plus(x0, s(x1)) gt(0, x0) gt(s(x0), 0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(true, x0, x1, x2) plus(x0, 0) plus(x0, s(x1)) gt(0, x0) gt(s(x0), 0) gt(s(x0), s(x1)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(u), s(v)) -> GT(u, v) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GT(s(u), s(v)) -> GT(u, v) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(n, s(m)) -> PLUS(n, m) The TRS R consists of the following rules: f(true, x, y, z) -> f(gt(x, plus(y, z)), x, s(y), z) f(true, x, y, z) -> f(gt(x, plus(y, z)), x, y, s(z)) plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) The set Q consists of the following terms: f(true, x0, x1, x2) plus(x0, 0) plus(x0, s(x1)) gt(0, x0) gt(s(x0), 0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(n, s(m)) -> PLUS(n, m) R is empty. The set Q consists of the following terms: f(true, x0, x1, x2) plus(x0, 0) plus(x0, s(x1)) gt(0, x0) gt(s(x0), 0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(true, x0, x1, x2) plus(x0, 0) plus(x0, s(x1)) gt(0, x0) gt(s(x0), 0) gt(s(x0), s(x1)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(n, s(m)) -> PLUS(n, m) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PLUS(n, s(m)) -> PLUS(n, m) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: F(true, x, y, z) -> F(gt(x, plus(y, z)), x, y, s(z)) F(true, x, y, z) -> F(gt(x, plus(y, z)), x, s(y), z) The TRS R consists of the following rules: f(true, x, y, z) -> f(gt(x, plus(y, z)), x, s(y), z) f(true, x, y, z) -> f(gt(x, plus(y, z)), x, y, s(z)) plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) The set Q consists of the following terms: f(true, x0, x1, x2) plus(x0, 0) plus(x0, s(x1)) gt(0, x0) gt(s(x0), 0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: F(true, x, y, z) -> F(gt(x, plus(y, z)), x, y, s(z)) F(true, x, y, z) -> F(gt(x, plus(y, z)), x, s(y), z) The TRS R consists of the following rules: plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) The set Q consists of the following terms: f(true, x0, x1, x2) plus(x0, 0) plus(x0, s(x1)) gt(0, x0) gt(s(x0), 0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(true, x0, x1, x2) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: F(true, x, y, z) -> F(gt(x, plus(y, z)), x, y, s(z)) F(true, x, y, z) -> F(gt(x, plus(y, z)), x, s(y), z) The TRS R consists of the following rules: plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) The set Q consists of the following terms: plus(x0, 0) plus(x0, s(x1)) gt(0, x0) gt(s(x0), 0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) NonInfProof (EQUIVALENT) The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: Note that final constraints are written in bold face. For Pair F(true, x, y, z) -> F(gt(x, plus(y, z)), x, y, s(z)) the following chains were created: *We consider the chain F(true, x0, x1, x2) -> F(gt(x0, plus(x1, x2)), x0, x1, s(x2)), F(true, x3, x4, x5) -> F(gt(x3, plus(x4, x5)), x3, x4, s(x5)) which results in the following constraint: (1) (F(gt(x0, plus(x1, x2)), x0, x1, s(x2))=F(true, x3, x4, x5) ==> F(true, x3, x4, x5)_>=_F(gt(x3, plus(x4, x5)), x3, x4, s(x5))) We simplified constraint (1) using rules (I), (II), (III), (VII) which results in the following new constraint: (2) (plus(x1, x2)=x24 & gt(x0, x24)=true ==> F(true, x0, x1, s(x2))_>=_F(gt(x0, plus(x1, s(x2))), x0, x1, s(s(x2)))) We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on gt(x0, x24)=true which results in the following new constraints: (3) (true=true & plus(x1, x2)=0 ==> F(true, s(x26), x1, s(x2))_>=_F(gt(s(x26), plus(x1, s(x2))), s(x26), x1, s(s(x2)))) (4) (gt(x28, x27)=true & plus(x1, x2)=s(x27) & (\/x29,x30:gt(x28, x27)=true & plus(x29, x30)=x27 ==> F(true, x28, x29, s(x30))_>=_F(gt(x28, plus(x29, s(x30))), x28, x29, s(s(x30)))) ==> F(true, s(x28), x1, s(x2))_>=_F(gt(s(x28), plus(x1, s(x2))), s(x28), x1, s(s(x2)))) We simplified constraint (3) using rules (I), (II) which results in the following new constraint: (5) (plus(x1, x2)=0 ==> F(true, s(x26), x1, s(x2))_>=_F(gt(s(x26), plus(x1, s(x2))), s(x26), x1, s(s(x2)))) We simplified constraint (4) using rule (V) (with possible (I) afterwards) using induction on plus(x1, x2)=s(x27) which results in the following new constraints: (6) (x34=s(x27) & gt(x28, x27)=true & (\/x29,x30:gt(x28, x27)=true & plus(x29, x30)=x27 ==> F(true, x28, x29, s(x30))_>=_F(gt(x28, plus(x29, s(x30))), x28, x29, s(s(x30)))) ==> F(true, s(x28), x34, s(0))_>=_F(gt(s(x28), plus(x34, s(0))), s(x28), x34, s(s(0)))) (7) (s(plus(x36, x35))=s(x27) & gt(x28, x27)=true & (\/x29,x30:gt(x28, x27)=true & plus(x29, x30)=x27 ==> F(true, x28, x29, s(x30))_>=_F(gt(x28, plus(x29, s(x30))), x28, x29, s(s(x30)))) & (\/x37,x38,x39,x40:plus(x36, x35)=s(x37) & gt(x38, x37)=true & (\/x39,x40:gt(x38, x37)=true & plus(x39, x40)=x37 ==> F(true, x38, x39, s(x40))_>=_F(gt(x38, plus(x39, s(x40))), x38, x39, s(s(x40)))) ==> F(true, s(x38), x36, s(x35))_>=_F(gt(s(x38), plus(x36, s(x35))), s(x38), x36, s(s(x35)))) ==> F(true, s(x28), x36, s(s(x35)))_>=_F(gt(s(x28), plus(x36, s(s(x35)))), s(x28), x36, s(s(s(x35))))) We simplified constraint (5) using rule (V) (with possible (I) afterwards) using induction on plus(x1, x2)=0 which results in the following new constraint: (8) (x31=0 ==> F(true, s(x26), x31, s(0))_>=_F(gt(s(x26), plus(x31, s(0))), s(x26), x31, s(s(0)))) We simplified constraint (8) using rule (III) which results in the following new constraint: (9) (F(true, s(x26), 0, s(0))_>=_F(gt(s(x26), plus(0, s(0))), s(x26), 0, s(s(0)))) We simplified constraint (6) using rules (III), (IV) which results in the following new constraint: (10) (gt(x28, x27)=true ==> F(true, s(x28), s(x27), s(0))_>=_F(gt(s(x28), plus(s(x27), s(0))), s(x28), s(x27), s(s(0)))) We simplified constraint (7) using rules (I), (II) which results in the following new constraint: (11) (plus(x36, x35)=x27 & gt(x28, x27)=true & (\/x29,x30:gt(x28, x27)=true & plus(x29, x30)=x27 ==> F(true, x28, x29, s(x30))_>=_F(gt(x28, plus(x29, s(x30))), x28, x29, s(s(x30)))) & (\/x37,x38,x39,x40:plus(x36, x35)=s(x37) & gt(x38, x37)=true & (\/x39,x40:gt(x38, x37)=true & plus(x39, x40)=x37 ==> F(true, x38, x39, s(x40))_>=_F(gt(x38, plus(x39, s(x40))), x38, x39, s(s(x40)))) ==> F(true, s(x38), x36, s(x35))_>=_F(gt(s(x38), plus(x36, s(x35))), s(x38), x36, s(s(x35)))) ==> F(true, s(x28), x36, s(s(x35)))_>=_F(gt(s(x28), plus(x36, s(s(x35)))), s(x28), x36, s(s(s(x35))))) We simplified constraint (10) using rule (V) (with possible (I) afterwards) using induction on gt(x28, x27)=true which results in the following new constraints: (12) (true=true ==> F(true, s(s(x42)), s(0), s(0))_>=_F(gt(s(s(x42)), plus(s(0), s(0))), s(s(x42)), s(0), s(s(0)))) (13) (gt(x44, x43)=true & (gt(x44, x43)=true ==> F(true, s(x44), s(x43), s(0))_>=_F(gt(s(x44), plus(s(x43), s(0))), s(x44), s(x43), s(s(0)))) ==> F(true, s(s(x44)), s(s(x43)), s(0))_>=_F(gt(s(s(x44)), plus(s(s(x43)), s(0))), s(s(x44)), s(s(x43)), s(s(0)))) We simplified constraint (12) using rules (I), (II) which results in the following new constraint: (14) (F(true, s(s(x42)), s(0), s(0))_>=_F(gt(s(s(x42)), plus(s(0), s(0))), s(s(x42)), s(0), s(s(0)))) We simplified constraint (13) using rule (VI) where we applied the induction hypothesis (gt(x44, x43)=true ==> F(true, s(x44), s(x43), s(0))_>=_F(gt(s(x44), plus(s(x43), s(0))), s(x44), s(x43), s(s(0)))) with sigma = [ ] which results in the following new constraint: (15) (F(true, s(x44), s(x43), s(0))_>=_F(gt(s(x44), plus(s(x43), s(0))), s(x44), s(x43), s(s(0))) ==> F(true, s(s(x44)), s(s(x43)), s(0))_>=_F(gt(s(s(x44)), plus(s(s(x43)), s(0))), s(s(x44)), s(s(x43)), s(s(0)))) We simplified constraint (11) using rule (VI) where we applied the induction hypothesis (\/x29,x30:gt(x28, x27)=true & plus(x29, x30)=x27 ==> F(true, x28, x29, s(x30))_>=_F(gt(x28, plus(x29, s(x30))), x28, x29, s(s(x30)))) with sigma = [x29 / x36, x30 / x35] which results in the following new constraint: (16) (F(true, x28, x36, s(x35))_>=_F(gt(x28, plus(x36, s(x35))), x28, x36, s(s(x35))) & (\/x37,x38,x39,x40:plus(x36, x35)=s(x37) & gt(x38, x37)=true & (\/x39,x40:gt(x38, x37)=true & plus(x39, x40)=x37 ==> F(true, x38, x39, s(x40))_>=_F(gt(x38, plus(x39, s(x40))), x38, x39, s(s(x40)))) ==> F(true, s(x38), x36, s(x35))_>=_F(gt(s(x38), plus(x36, s(x35))), s(x38), x36, s(s(x35)))) ==> F(true, s(x28), x36, s(s(x35)))_>=_F(gt(s(x28), plus(x36, s(s(x35)))), s(x28), x36, s(s(s(x35))))) We simplified constraint (16) using rule (IV) which results in the following new constraint: (17) (F(true, x28, x36, s(x35))_>=_F(gt(x28, plus(x36, s(x35))), x28, x36, s(s(x35))) ==> F(true, s(x28), x36, s(s(x35)))_>=_F(gt(s(x28), plus(x36, s(s(x35)))), s(x28), x36, s(s(s(x35))))) *We consider the chain F(true, x6, x7, x8) -> F(gt(x6, plus(x7, x8)), x6, s(x7), x8), F(true, x9, x10, x11) -> F(gt(x9, plus(x10, x11)), x9, x10, s(x11)) which results in the following constraint: (1) (F(gt(x6, plus(x7, x8)), x6, s(x7), x8)=F(true, x9, x10, x11) ==> F(true, x9, x10, x11)_>=_F(gt(x9, plus(x10, x11)), x9, x10, s(x11))) We simplified constraint (1) using rules (I), (II), (III), (VII) which results in the following new constraint: (2) (plus(x7, x8)=x45 & gt(x6, x45)=true ==> F(true, x6, s(x7), x8)_>=_F(gt(x6, plus(s(x7), x8)), x6, s(x7), s(x8))) We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on gt(x6, x45)=true which results in the following new constraints: (3) (true=true & plus(x7, x8)=0 ==> F(true, s(x47), s(x7), x8)_>=_F(gt(s(x47), plus(s(x7), x8)), s(x47), s(x7), s(x8))) (4) (gt(x49, x48)=true & plus(x7, x8)=s(x48) & (\/x50,x51:gt(x49, x48)=true & plus(x50, x51)=x48 ==> F(true, x49, s(x50), x51)_>=_F(gt(x49, plus(s(x50), x51)), x49, s(x50), s(x51))) ==> F(true, s(x49), s(x7), x8)_>=_F(gt(s(x49), plus(s(x7), x8)), s(x49), s(x7), s(x8))) We simplified constraint (3) using rules (I), (II) which results in the following new constraint: (5) (plus(x7, x8)=0 ==> F(true, s(x47), s(x7), x8)_>=_F(gt(s(x47), plus(s(x7), x8)), s(x47), s(x7), s(x8))) We simplified constraint (4) using rule (V) (with possible (I) afterwards) using induction on plus(x7, x8)=s(x48) which results in the following new constraints: (6) (x55=s(x48) & gt(x49, x48)=true & (\/x50,x51:gt(x49, x48)=true & plus(x50, x51)=x48 ==> F(true, x49, s(x50), x51)_>=_F(gt(x49, plus(s(x50), x51)), x49, s(x50), s(x51))) ==> F(true, s(x49), s(x55), 0)_>=_F(gt(s(x49), plus(s(x55), 0)), s(x49), s(x55), s(0))) (7) (s(plus(x57, x56))=s(x48) & gt(x49, x48)=true & (\/x50,x51:gt(x49, x48)=true & plus(x50, x51)=x48 ==> F(true, x49, s(x50), x51)_>=_F(gt(x49, plus(s(x50), x51)), x49, s(x50), s(x51))) & (\/x58,x59,x60,x61:plus(x57, x56)=s(x58) & gt(x59, x58)=true & (\/x60,x61:gt(x59, x58)=true & plus(x60, x61)=x58 ==> F(true, x59, s(x60), x61)_>=_F(gt(x59, plus(s(x60), x61)), x59, s(x60), s(x61))) ==> F(true, s(x59), s(x57), x56)_>=_F(gt(s(x59), plus(s(x57), x56)), s(x59), s(x57), s(x56))) ==> F(true, s(x49), s(x57), s(x56))_>=_F(gt(s(x49), plus(s(x57), s(x56))), s(x49), s(x57), s(s(x56)))) We simplified constraint (5) using rule (V) (with possible (I) afterwards) using induction on plus(x7, x8)=0 which results in the following new constraint: (8) (x52=0 ==> F(true, s(x47), s(x52), 0)_>=_F(gt(s(x47), plus(s(x52), 0)), s(x47), s(x52), s(0))) We simplified constraint (8) using rule (III) which results in the following new constraint: (9) (F(true, s(x47), s(0), 0)_>=_F(gt(s(x47), plus(s(0), 0)), s(x47), s(0), s(0))) We simplified constraint (6) using rules (III), (IV) which results in the following new constraint: (10) (gt(x49, x48)=true ==> F(true, s(x49), s(s(x48)), 0)_>=_F(gt(s(x49), plus(s(s(x48)), 0)), s(x49), s(s(x48)), s(0))) We simplified constraint (7) using rules (I), (II) which results in the following new constraint: (11) (plus(x57, x56)=x48 & gt(x49, x48)=true & (\/x50,x51:gt(x49, x48)=true & plus(x50, x51)=x48 ==> F(true, x49, s(x50), x51)_>=_F(gt(x49, plus(s(x50), x51)), x49, s(x50), s(x51))) & (\/x58,x59,x60,x61:plus(x57, x56)=s(x58) & gt(x59, x58)=true & (\/x60,x61:gt(x59, x58)=true & plus(x60, x61)=x58 ==> F(true, x59, s(x60), x61)_>=_F(gt(x59, plus(s(x60), x61)), x59, s(x60), s(x61))) ==> F(true, s(x59), s(x57), x56)_>=_F(gt(s(x59), plus(s(x57), x56)), s(x59), s(x57), s(x56))) ==> F(true, s(x49), s(x57), s(x56))_>=_F(gt(s(x49), plus(s(x57), s(x56))), s(x49), s(x57), s(s(x56)))) We simplified constraint (10) using rule (V) (with possible (I) afterwards) using induction on gt(x49, x48)=true which results in the following new constraints: (12) (true=true ==> F(true, s(s(x63)), s(s(0)), 0)_>=_F(gt(s(s(x63)), plus(s(s(0)), 0)), s(s(x63)), s(s(0)), s(0))) (13) (gt(x65, x64)=true & (gt(x65, x64)=true ==> F(true, s(x65), s(s(x64)), 0)_>=_F(gt(s(x65), plus(s(s(x64)), 0)), s(x65), s(s(x64)), s(0))) ==> F(true, s(s(x65)), s(s(s(x64))), 0)_>=_F(gt(s(s(x65)), plus(s(s(s(x64))), 0)), s(s(x65)), s(s(s(x64))), s(0))) We simplified constraint (12) using rules (I), (II) which results in the following new constraint: (14) (F(true, s(s(x63)), s(s(0)), 0)_>=_F(gt(s(s(x63)), plus(s(s(0)), 0)), s(s(x63)), s(s(0)), s(0))) We simplified constraint (13) using rule (VI) where we applied the induction hypothesis (gt(x65, x64)=true ==> F(true, s(x65), s(s(x64)), 0)_>=_F(gt(s(x65), plus(s(s(x64)), 0)), s(x65), s(s(x64)), s(0))) with sigma = [ ] which results in the following new constraint: (15) (F(true, s(x65), s(s(x64)), 0)_>=_F(gt(s(x65), plus(s(s(x64)), 0)), s(x65), s(s(x64)), s(0)) ==> F(true, s(s(x65)), s(s(s(x64))), 0)_>=_F(gt(s(s(x65)), plus(s(s(s(x64))), 0)), s(s(x65)), s(s(s(x64))), s(0))) We simplified constraint (11) using rule (VI) where we applied the induction hypothesis (\/x50,x51:gt(x49, x48)=true & plus(x50, x51)=x48 ==> F(true, x49, s(x50), x51)_>=_F(gt(x49, plus(s(x50), x51)), x49, s(x50), s(x51))) with sigma = [x50 / x57, x51 / x56] which results in the following new constraint: (16) (F(true, x49, s(x57), x56)_>=_F(gt(x49, plus(s(x57), x56)), x49, s(x57), s(x56)) & (\/x58,x59,x60,x61:plus(x57, x56)=s(x58) & gt(x59, x58)=true & (\/x60,x61:gt(x59, x58)=true & plus(x60, x61)=x58 ==> F(true, x59, s(x60), x61)_>=_F(gt(x59, plus(s(x60), x61)), x59, s(x60), s(x61))) ==> F(true, s(x59), s(x57), x56)_>=_F(gt(s(x59), plus(s(x57), x56)), s(x59), s(x57), s(x56))) ==> F(true, s(x49), s(x57), s(x56))_>=_F(gt(s(x49), plus(s(x57), s(x56))), s(x49), s(x57), s(s(x56)))) We simplified constraint (16) using rule (IV) which results in the following new constraint: (17) (F(true, x49, s(x57), x56)_>=_F(gt(x49, plus(s(x57), x56)), x49, s(x57), s(x56)) ==> F(true, s(x49), s(x57), s(x56))_>=_F(gt(s(x49), plus(s(x57), s(x56))), s(x49), s(x57), s(s(x56)))) For Pair F(true, x, y, z) -> F(gt(x, plus(y, z)), x, s(y), z) the following chains were created: *We consider the chain F(true, x12, x13, x14) -> F(gt(x12, plus(x13, x14)), x12, x13, s(x14)), F(true, x15, x16, x17) -> F(gt(x15, plus(x16, x17)), x15, s(x16), x17) which results in the following constraint: (1) (F(gt(x12, plus(x13, x14)), x12, x13, s(x14))=F(true, x15, x16, x17) ==> F(true, x15, x16, x17)_>=_F(gt(x15, plus(x16, x17)), x15, s(x16), x17)) We simplified constraint (1) using rules (I), (II), (III), (VII) which results in the following new constraint: (2) (plus(x13, x14)=x66 & gt(x12, x66)=true ==> F(true, x12, x13, s(x14))_>=_F(gt(x12, plus(x13, s(x14))), x12, s(x13), s(x14))) We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on gt(x12, x66)=true which results in the following new constraints: (3) (true=true & plus(x13, x14)=0 ==> F(true, s(x68), x13, s(x14))_>=_F(gt(s(x68), plus(x13, s(x14))), s(x68), s(x13), s(x14))) (4) (gt(x70, x69)=true & plus(x13, x14)=s(x69) & (\/x71,x72:gt(x70, x69)=true & plus(x71, x72)=x69 ==> F(true, x70, x71, s(x72))_>=_F(gt(x70, plus(x71, s(x72))), x70, s(x71), s(x72))) ==> F(true, s(x70), x13, s(x14))_>=_F(gt(s(x70), plus(x13, s(x14))), s(x70), s(x13), s(x14))) We simplified constraint (3) using rules (I), (II) which results in the following new constraint: (5) (plus(x13, x14)=0 ==> F(true, s(x68), x13, s(x14))_>=_F(gt(s(x68), plus(x13, s(x14))), s(x68), s(x13), s(x14))) We simplified constraint (4) using rule (V) (with possible (I) afterwards) using induction on plus(x13, x14)=s(x69) which results in the following new constraints: (6) (x76=s(x69) & gt(x70, x69)=true & (\/x71,x72:gt(x70, x69)=true & plus(x71, x72)=x69 ==> F(true, x70, x71, s(x72))_>=_F(gt(x70, plus(x71, s(x72))), x70, s(x71), s(x72))) ==> F(true, s(x70), x76, s(0))_>=_F(gt(s(x70), plus(x76, s(0))), s(x70), s(x76), s(0))) (7) (s(plus(x78, x77))=s(x69) & gt(x70, x69)=true & (\/x71,x72:gt(x70, x69)=true & plus(x71, x72)=x69 ==> F(true, x70, x71, s(x72))_>=_F(gt(x70, plus(x71, s(x72))), x70, s(x71), s(x72))) & (\/x79,x80,x81,x82:plus(x78, x77)=s(x79) & gt(x80, x79)=true & (\/x81,x82:gt(x80, x79)=true & plus(x81, x82)=x79 ==> F(true, x80, x81, s(x82))_>=_F(gt(x80, plus(x81, s(x82))), x80, s(x81), s(x82))) ==> F(true, s(x80), x78, s(x77))_>=_F(gt(s(x80), plus(x78, s(x77))), s(x80), s(x78), s(x77))) ==> F(true, s(x70), x78, s(s(x77)))_>=_F(gt(s(x70), plus(x78, s(s(x77)))), s(x70), s(x78), s(s(x77)))) We simplified constraint (5) using rule (V) (with possible (I) afterwards) using induction on plus(x13, x14)=0 which results in the following new constraint: (8) (x73=0 ==> F(true, s(x68), x73, s(0))_>=_F(gt(s(x68), plus(x73, s(0))), s(x68), s(x73), s(0))) We simplified constraint (8) using rule (III) which results in the following new constraint: (9) (F(true, s(x68), 0, s(0))_>=_F(gt(s(x68), plus(0, s(0))), s(x68), s(0), s(0))) We simplified constraint (6) using rules (III), (IV) which results in the following new constraint: (10) (gt(x70, x69)=true ==> F(true, s(x70), s(x69), s(0))_>=_F(gt(s(x70), plus(s(x69), s(0))), s(x70), s(s(x69)), s(0))) We simplified constraint (7) using rules (I), (II) which results in the following new constraint: (11) (plus(x78, x77)=x69 & gt(x70, x69)=true & (\/x71,x72:gt(x70, x69)=true & plus(x71, x72)=x69 ==> F(true, x70, x71, s(x72))_>=_F(gt(x70, plus(x71, s(x72))), x70, s(x71), s(x72))) & (\/x79,x80,x81,x82:plus(x78, x77)=s(x79) & gt(x80, x79)=true & (\/x81,x82:gt(x80, x79)=true & plus(x81, x82)=x79 ==> F(true, x80, x81, s(x82))_>=_F(gt(x80, plus(x81, s(x82))), x80, s(x81), s(x82))) ==> F(true, s(x80), x78, s(x77))_>=_F(gt(s(x80), plus(x78, s(x77))), s(x80), s(x78), s(x77))) ==> F(true, s(x70), x78, s(s(x77)))_>=_F(gt(s(x70), plus(x78, s(s(x77)))), s(x70), s(x78), s(s(x77)))) We simplified constraint (10) using rule (V) (with possible (I) afterwards) using induction on gt(x70, x69)=true which results in the following new constraints: (12) (true=true ==> F(true, s(s(x84)), s(0), s(0))_>=_F(gt(s(s(x84)), plus(s(0), s(0))), s(s(x84)), s(s(0)), s(0))) (13) (gt(x86, x85)=true & (gt(x86, x85)=true ==> F(true, s(x86), s(x85), s(0))_>=_F(gt(s(x86), plus(s(x85), s(0))), s(x86), s(s(x85)), s(0))) ==> F(true, s(s(x86)), s(s(x85)), s(0))_>=_F(gt(s(s(x86)), plus(s(s(x85)), s(0))), s(s(x86)), s(s(s(x85))), s(0))) We simplified constraint (12) using rules (I), (II) which results in the following new constraint: (14) (F(true, s(s(x84)), s(0), s(0))_>=_F(gt(s(s(x84)), plus(s(0), s(0))), s(s(x84)), s(s(0)), s(0))) We simplified constraint (13) using rule (VI) where we applied the induction hypothesis (gt(x86, x85)=true ==> F(true, s(x86), s(x85), s(0))_>=_F(gt(s(x86), plus(s(x85), s(0))), s(x86), s(s(x85)), s(0))) with sigma = [ ] which results in the following new constraint: (15) (F(true, s(x86), s(x85), s(0))_>=_F(gt(s(x86), plus(s(x85), s(0))), s(x86), s(s(x85)), s(0)) ==> F(true, s(s(x86)), s(s(x85)), s(0))_>=_F(gt(s(s(x86)), plus(s(s(x85)), s(0))), s(s(x86)), s(s(s(x85))), s(0))) We simplified constraint (11) using rule (VI) where we applied the induction hypothesis (\/x71,x72:gt(x70, x69)=true & plus(x71, x72)=x69 ==> F(true, x70, x71, s(x72))_>=_F(gt(x70, plus(x71, s(x72))), x70, s(x71), s(x72))) with sigma = [x71 / x78, x72 / x77] which results in the following new constraint: (16) (F(true, x70, x78, s(x77))_>=_F(gt(x70, plus(x78, s(x77))), x70, s(x78), s(x77)) & (\/x79,x80,x81,x82:plus(x78, x77)=s(x79) & gt(x80, x79)=true & (\/x81,x82:gt(x80, x79)=true & plus(x81, x82)=x79 ==> F(true, x80, x81, s(x82))_>=_F(gt(x80, plus(x81, s(x82))), x80, s(x81), s(x82))) ==> F(true, s(x80), x78, s(x77))_>=_F(gt(s(x80), plus(x78, s(x77))), s(x80), s(x78), s(x77))) ==> F(true, s(x70), x78, s(s(x77)))_>=_F(gt(s(x70), plus(x78, s(s(x77)))), s(x70), s(x78), s(s(x77)))) We simplified constraint (16) using rule (IV) which results in the following new constraint: (17) (F(true, x70, x78, s(x77))_>=_F(gt(x70, plus(x78, s(x77))), x70, s(x78), s(x77)) ==> F(true, s(x70), x78, s(s(x77)))_>=_F(gt(s(x70), plus(x78, s(s(x77)))), s(x70), s(x78), s(s(x77)))) *We consider the chain F(true, x18, x19, x20) -> F(gt(x18, plus(x19, x20)), x18, s(x19), x20), F(true, x21, x22, x23) -> F(gt(x21, plus(x22, x23)), x21, s(x22), x23) which results in the following constraint: (1) (F(gt(x18, plus(x19, x20)), x18, s(x19), x20)=F(true, x21, x22, x23) ==> F(true, x21, x22, x23)_>=_F(gt(x21, plus(x22, x23)), x21, s(x22), x23)) We simplified constraint (1) using rules (I), (II), (III), (VII) which results in the following new constraint: (2) (plus(x19, x20)=x87 & gt(x18, x87)=true ==> F(true, x18, s(x19), x20)_>=_F(gt(x18, plus(s(x19), x20)), x18, s(s(x19)), x20)) We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on gt(x18, x87)=true which results in the following new constraints: (3) (true=true & plus(x19, x20)=0 ==> F(true, s(x89), s(x19), x20)_>=_F(gt(s(x89), plus(s(x19), x20)), s(x89), s(s(x19)), x20)) (4) (gt(x91, x90)=true & plus(x19, x20)=s(x90) & (\/x92,x93:gt(x91, x90)=true & plus(x92, x93)=x90 ==> F(true, x91, s(x92), x93)_>=_F(gt(x91, plus(s(x92), x93)), x91, s(s(x92)), x93)) ==> F(true, s(x91), s(x19), x20)_>=_F(gt(s(x91), plus(s(x19), x20)), s(x91), s(s(x19)), x20)) We simplified constraint (3) using rules (I), (II) which results in the following new constraint: (5) (plus(x19, x20)=0 ==> F(true, s(x89), s(x19), x20)_>=_F(gt(s(x89), plus(s(x19), x20)), s(x89), s(s(x19)), x20)) We simplified constraint (4) using rule (V) (with possible (I) afterwards) using induction on plus(x19, x20)=s(x90) which results in the following new constraints: (6) (x97=s(x90) & gt(x91, x90)=true & (\/x92,x93:gt(x91, x90)=true & plus(x92, x93)=x90 ==> F(true, x91, s(x92), x93)_>=_F(gt(x91, plus(s(x92), x93)), x91, s(s(x92)), x93)) ==> F(true, s(x91), s(x97), 0)_>=_F(gt(s(x91), plus(s(x97), 0)), s(x91), s(s(x97)), 0)) (7) (s(plus(x99, x98))=s(x90) & gt(x91, x90)=true & (\/x92,x93:gt(x91, x90)=true & plus(x92, x93)=x90 ==> F(true, x91, s(x92), x93)_>=_F(gt(x91, plus(s(x92), x93)), x91, s(s(x92)), x93)) & (\/x100,x101,x102,x103:plus(x99, x98)=s(x100) & gt(x101, x100)=true & (\/x102,x103:gt(x101, x100)=true & plus(x102, x103)=x100 ==> F(true, x101, s(x102), x103)_>=_F(gt(x101, plus(s(x102), x103)), x101, s(s(x102)), x103)) ==> F(true, s(x101), s(x99), x98)_>=_F(gt(s(x101), plus(s(x99), x98)), s(x101), s(s(x99)), x98)) ==> F(true, s(x91), s(x99), s(x98))_>=_F(gt(s(x91), plus(s(x99), s(x98))), s(x91), s(s(x99)), s(x98))) We simplified constraint (5) using rule (V) (with possible (I) afterwards) using induction on plus(x19, x20)=0 which results in the following new constraint: (8) (x94=0 ==> F(true, s(x89), s(x94), 0)_>=_F(gt(s(x89), plus(s(x94), 0)), s(x89), s(s(x94)), 0)) We simplified constraint (8) using rule (III) which results in the following new constraint: (9) (F(true, s(x89), s(0), 0)_>=_F(gt(s(x89), plus(s(0), 0)), s(x89), s(s(0)), 0)) We simplified constraint (6) using rules (III), (IV) which results in the following new constraint: (10) (gt(x91, x90)=true ==> F(true, s(x91), s(s(x90)), 0)_>=_F(gt(s(x91), plus(s(s(x90)), 0)), s(x91), s(s(s(x90))), 0)) We simplified constraint (7) using rules (I), (II) which results in the following new constraint: (11) (plus(x99, x98)=x90 & gt(x91, x90)=true & (\/x92,x93:gt(x91, x90)=true & plus(x92, x93)=x90 ==> F(true, x91, s(x92), x93)_>=_F(gt(x91, plus(s(x92), x93)), x91, s(s(x92)), x93)) & (\/x100,x101,x102,x103:plus(x99, x98)=s(x100) & gt(x101, x100)=true & (\/x102,x103:gt(x101, x100)=true & plus(x102, x103)=x100 ==> F(true, x101, s(x102), x103)_>=_F(gt(x101, plus(s(x102), x103)), x101, s(s(x102)), x103)) ==> F(true, s(x101), s(x99), x98)_>=_F(gt(s(x101), plus(s(x99), x98)), s(x101), s(s(x99)), x98)) ==> F(true, s(x91), s(x99), s(x98))_>=_F(gt(s(x91), plus(s(x99), s(x98))), s(x91), s(s(x99)), s(x98))) We simplified constraint (10) using rule (V) (with possible (I) afterwards) using induction on gt(x91, x90)=true which results in the following new constraints: (12) (true=true ==> F(true, s(s(x105)), s(s(0)), 0)_>=_F(gt(s(s(x105)), plus(s(s(0)), 0)), s(s(x105)), s(s(s(0))), 0)) (13) (gt(x107, x106)=true & (gt(x107, x106)=true ==> F(true, s(x107), s(s(x106)), 0)_>=_F(gt(s(x107), plus(s(s(x106)), 0)), s(x107), s(s(s(x106))), 0)) ==> F(true, s(s(x107)), s(s(s(x106))), 0)_>=_F(gt(s(s(x107)), plus(s(s(s(x106))), 0)), s(s(x107)), s(s(s(s(x106)))), 0)) We simplified constraint (12) using rules (I), (II) which results in the following new constraint: (14) (F(true, s(s(x105)), s(s(0)), 0)_>=_F(gt(s(s(x105)), plus(s(s(0)), 0)), s(s(x105)), s(s(s(0))), 0)) We simplified constraint (13) using rule (VI) where we applied the induction hypothesis (gt(x107, x106)=true ==> F(true, s(x107), s(s(x106)), 0)_>=_F(gt(s(x107), plus(s(s(x106)), 0)), s(x107), s(s(s(x106))), 0)) with sigma = [ ] which results in the following new constraint: (15) (F(true, s(x107), s(s(x106)), 0)_>=_F(gt(s(x107), plus(s(s(x106)), 0)), s(x107), s(s(s(x106))), 0) ==> F(true, s(s(x107)), s(s(s(x106))), 0)_>=_F(gt(s(s(x107)), plus(s(s(s(x106))), 0)), s(s(x107)), s(s(s(s(x106)))), 0)) We simplified constraint (11) using rule (VI) where we applied the induction hypothesis (\/x92,x93:gt(x91, x90)=true & plus(x92, x93)=x90 ==> F(true, x91, s(x92), x93)_>=_F(gt(x91, plus(s(x92), x93)), x91, s(s(x92)), x93)) with sigma = [x92 / x99, x93 / x98] which results in the following new constraint: (16) (F(true, x91, s(x99), x98)_>=_F(gt(x91, plus(s(x99), x98)), x91, s(s(x99)), x98) & (\/x100,x101,x102,x103:plus(x99, x98)=s(x100) & gt(x101, x100)=true & (\/x102,x103:gt(x101, x100)=true & plus(x102, x103)=x100 ==> F(true, x101, s(x102), x103)_>=_F(gt(x101, plus(s(x102), x103)), x101, s(s(x102)), x103)) ==> F(true, s(x101), s(x99), x98)_>=_F(gt(s(x101), plus(s(x99), x98)), s(x101), s(s(x99)), x98)) ==> F(true, s(x91), s(x99), s(x98))_>=_F(gt(s(x91), plus(s(x99), s(x98))), s(x91), s(s(x99)), s(x98))) We simplified constraint (16) using rule (IV) which results in the following new constraint: (17) (F(true, x91, s(x99), x98)_>=_F(gt(x91, plus(s(x99), x98)), x91, s(s(x99)), x98) ==> F(true, s(x91), s(x99), s(x98))_>=_F(gt(s(x91), plus(s(x99), s(x98))), s(x91), s(s(x99)), s(x98))) To summarize, we get the following constraints P__>=_ for the following pairs. *F(true, x, y, z) -> F(gt(x, plus(y, z)), x, y, s(z)) *(F(true, s(x26), 0, s(0))_>=_F(gt(s(x26), plus(0, s(0))), s(x26), 0, s(s(0)))) *(F(true, s(s(x42)), s(0), s(0))_>=_F(gt(s(s(x42)), plus(s(0), s(0))), s(s(x42)), s(0), s(s(0)))) *(F(true, s(x44), s(x43), s(0))_>=_F(gt(s(x44), plus(s(x43), s(0))), s(x44), s(x43), s(s(0))) ==> F(true, s(s(x44)), s(s(x43)), s(0))_>=_F(gt(s(s(x44)), plus(s(s(x43)), s(0))), s(s(x44)), s(s(x43)), s(s(0)))) *(F(true, x28, x36, s(x35))_>=_F(gt(x28, plus(x36, s(x35))), x28, x36, s(s(x35))) ==> F(true, s(x28), x36, s(s(x35)))_>=_F(gt(s(x28), plus(x36, s(s(x35)))), s(x28), x36, s(s(s(x35))))) *(F(true, s(x47), s(0), 0)_>=_F(gt(s(x47), plus(s(0), 0)), s(x47), s(0), s(0))) *(F(true, s(s(x63)), s(s(0)), 0)_>=_F(gt(s(s(x63)), plus(s(s(0)), 0)), s(s(x63)), s(s(0)), s(0))) *(F(true, s(x65), s(s(x64)), 0)_>=_F(gt(s(x65), plus(s(s(x64)), 0)), s(x65), s(s(x64)), s(0)) ==> F(true, s(s(x65)), s(s(s(x64))), 0)_>=_F(gt(s(s(x65)), plus(s(s(s(x64))), 0)), s(s(x65)), s(s(s(x64))), s(0))) *(F(true, x49, s(x57), x56)_>=_F(gt(x49, plus(s(x57), x56)), x49, s(x57), s(x56)) ==> F(true, s(x49), s(x57), s(x56))_>=_F(gt(s(x49), plus(s(x57), s(x56))), s(x49), s(x57), s(s(x56)))) *F(true, x, y, z) -> F(gt(x, plus(y, z)), x, s(y), z) *(F(true, s(x68), 0, s(0))_>=_F(gt(s(x68), plus(0, s(0))), s(x68), s(0), s(0))) *(F(true, s(s(x84)), s(0), s(0))_>=_F(gt(s(s(x84)), plus(s(0), s(0))), s(s(x84)), s(s(0)), s(0))) *(F(true, s(x86), s(x85), s(0))_>=_F(gt(s(x86), plus(s(x85), s(0))), s(x86), s(s(x85)), s(0)) ==> F(true, s(s(x86)), s(s(x85)), s(0))_>=_F(gt(s(s(x86)), plus(s(s(x85)), s(0))), s(s(x86)), s(s(s(x85))), s(0))) *(F(true, x70, x78, s(x77))_>=_F(gt(x70, plus(x78, s(x77))), x70, s(x78), s(x77)) ==> F(true, s(x70), x78, s(s(x77)))_>=_F(gt(s(x70), plus(x78, s(s(x77)))), s(x70), s(x78), s(s(x77)))) *(F(true, s(x89), s(0), 0)_>=_F(gt(s(x89), plus(s(0), 0)), s(x89), s(s(0)), 0)) *(F(true, s(s(x105)), s(s(0)), 0)_>=_F(gt(s(s(x105)), plus(s(s(0)), 0)), s(s(x105)), s(s(s(0))), 0)) *(F(true, s(x107), s(s(x106)), 0)_>=_F(gt(s(x107), plus(s(s(x106)), 0)), s(x107), s(s(s(x106))), 0) ==> F(true, s(s(x107)), s(s(s(x106))), 0)_>=_F(gt(s(s(x107)), plus(s(s(s(x106))), 0)), s(s(x107)), s(s(s(s(x106)))), 0)) *(F(true, x91, s(x99), x98)_>=_F(gt(x91, plus(s(x99), x98)), x91, s(s(x99)), x98) ==> F(true, s(x91), s(x99), s(x98))_>=_F(gt(s(x91), plus(s(x99), s(x98))), s(x91), s(s(x99)), s(x98))) The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. Using the following integer polynomial ordering the resulting constraints can be solved Polynomial interpretation [NONINF]: POL(0) = 0 POL(F(x_1, x_2, x_3, x_4)) = -1 - x_1 + x_2 - x_3 - x_4 POL(c) = -1 POL(false) = 0 POL(gt(x_1, x_2)) = 0 POL(plus(x_1, x_2)) = 0 POL(s(x_1)) = 1 + x_1 POL(true) = 0 The following pairs are in P_>: F(true, x, y, z) -> F(gt(x, plus(y, z)), x, y, s(z)) F(true, x, y, z) -> F(gt(x, plus(y, z)), x, s(y), z) The following pairs are in P_bound: F(true, x, y, z) -> F(gt(x, plus(y, z)), x, y, s(z)) F(true, x, y, z) -> F(gt(x, plus(y, z)), x, s(y), z) The following rules are usable: false -> gt(0, v) true -> gt(s(u), 0) gt(u, v) -> gt(s(u), s(v)) ---------------------------------------- (27) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) The set Q consists of the following terms: plus(x0, 0) plus(x0, s(x1)) gt(0, x0) gt(s(x0), 0) gt(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (29) YES