YES Problem 1: (VAR v_NonEmpty:S L:S X:S Y:S) (RULES rev(cons(X:S,L:S)) -> cons(rev1(X:S,L:S),rev2(X:S,L:S)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(X:S),nil) -> s(X:S) rev1(X:S,cons(Y:S,L:S)) -> rev1(Y:S,L:S) rev2(X:S,cons(Y:S,L:S)) -> rev(cons(X:S,rev(rev2(Y:S,L:S)))) rev2(X:S,nil) -> nil ) Problem 1: Innermost Equivalent Processor: -> Rules: rev(cons(X:S,L:S)) -> cons(rev1(X:S,L:S),rev2(X:S,L:S)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(X:S),nil) -> s(X:S) rev1(X:S,cons(Y:S,L:S)) -> rev1(Y:S,L:S) rev2(X:S,cons(Y:S,L:S)) -> rev(cons(X:S,rev(rev2(Y:S,L:S)))) rev2(X:S,nil) -> nil -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: REV(cons(X:S,L:S)) -> REV1(X:S,L:S) REV(cons(X:S,L:S)) -> REV2(X:S,L:S) REV1(X:S,cons(Y:S,L:S)) -> REV1(Y:S,L:S) REV2(X:S,cons(Y:S,L:S)) -> REV(rev2(Y:S,L:S)) REV2(X:S,cons(Y:S,L:S)) -> REV(cons(X:S,rev(rev2(Y:S,L:S)))) REV2(X:S,cons(Y:S,L:S)) -> REV2(Y:S,L:S) -> Rules: rev(cons(X:S,L:S)) -> cons(rev1(X:S,L:S),rev2(X:S,L:S)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(X:S),nil) -> s(X:S) rev1(X:S,cons(Y:S,L:S)) -> rev1(Y:S,L:S) rev2(X:S,cons(Y:S,L:S)) -> rev(cons(X:S,rev(rev2(Y:S,L:S)))) rev2(X:S,nil) -> nil Problem 1: SCC Processor: -> Pairs: REV(cons(X:S,L:S)) -> REV1(X:S,L:S) REV(cons(X:S,L:S)) -> REV2(X:S,L:S) REV1(X:S,cons(Y:S,L:S)) -> REV1(Y:S,L:S) REV2(X:S,cons(Y:S,L:S)) -> REV(rev2(Y:S,L:S)) REV2(X:S,cons(Y:S,L:S)) -> REV(cons(X:S,rev(rev2(Y:S,L:S)))) REV2(X:S,cons(Y:S,L:S)) -> REV2(Y:S,L:S) -> Rules: rev(cons(X:S,L:S)) -> cons(rev1(X:S,L:S),rev2(X:S,L:S)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(X:S),nil) -> s(X:S) rev1(X:S,cons(Y:S,L:S)) -> rev1(Y:S,L:S) rev2(X:S,cons(Y:S,L:S)) -> rev(cons(X:S,rev(rev2(Y:S,L:S)))) rev2(X:S,nil) -> nil ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: REV1(X:S,cons(Y:S,L:S)) -> REV1(Y:S,L:S) ->->-> Rules: rev(cons(X:S,L:S)) -> cons(rev1(X:S,L:S),rev2(X:S,L:S)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(X:S),nil) -> s(X:S) rev1(X:S,cons(Y:S,L:S)) -> rev1(Y:S,L:S) rev2(X:S,cons(Y:S,L:S)) -> rev(cons(X:S,rev(rev2(Y:S,L:S)))) rev2(X:S,nil) -> nil ->->Cycle: ->->-> Pairs: REV(cons(X:S,L:S)) -> REV2(X:S,L:S) REV2(X:S,cons(Y:S,L:S)) -> REV(rev2(Y:S,L:S)) REV2(X:S,cons(Y:S,L:S)) -> REV(cons(X:S,rev(rev2(Y:S,L:S)))) REV2(X:S,cons(Y:S,L:S)) -> REV2(Y:S,L:S) ->->-> Rules: rev(cons(X:S,L:S)) -> cons(rev1(X:S,L:S),rev2(X:S,L:S)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(X:S),nil) -> s(X:S) rev1(X:S,cons(Y:S,L:S)) -> rev1(Y:S,L:S) rev2(X:S,cons(Y:S,L:S)) -> rev(cons(X:S,rev(rev2(Y:S,L:S)))) rev2(X:S,nil) -> nil The problem is decomposed in 2 subproblems. Problem 1.1: Subterm Processor: -> Pairs: REV1(X:S,cons(Y:S,L:S)) -> REV1(Y:S,L:S) -> Rules: rev(cons(X:S,L:S)) -> cons(rev1(X:S,L:S),rev2(X:S,L:S)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(X:S),nil) -> s(X:S) rev1(X:S,cons(Y:S,L:S)) -> rev1(Y:S,L:S) rev2(X:S,cons(Y:S,L:S)) -> rev(cons(X:S,rev(rev2(Y:S,L:S)))) rev2(X:S,nil) -> nil ->Projection: pi(REV1) = 2 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: rev(cons(X:S,L:S)) -> cons(rev1(X:S,L:S),rev2(X:S,L:S)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(X:S),nil) -> s(X:S) rev1(X:S,cons(Y:S,L:S)) -> rev1(Y:S,L:S) rev2(X:S,cons(Y:S,L:S)) -> rev(cons(X:S,rev(rev2(Y:S,L:S)))) rev2(X:S,nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Reduction Pairs Processor: -> Pairs: REV(cons(X:S,L:S)) -> REV2(X:S,L:S) REV2(X:S,cons(Y:S,L:S)) -> REV(rev2(Y:S,L:S)) REV2(X:S,cons(Y:S,L:S)) -> REV(cons(X:S,rev(rev2(Y:S,L:S)))) REV2(X:S,cons(Y:S,L:S)) -> REV2(Y:S,L:S) -> Rules: rev(cons(X:S,L:S)) -> cons(rev1(X:S,L:S),rev2(X:S,L:S)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(X:S),nil) -> s(X:S) rev1(X:S,cons(Y:S,L:S)) -> rev1(Y:S,L:S) rev2(X:S,cons(Y:S,L:S)) -> rev(cons(X:S,rev(rev2(Y:S,L:S)))) rev2(X:S,nil) -> nil -> Usable rules: rev(cons(X:S,L:S)) -> cons(rev1(X:S,L:S),rev2(X:S,L:S)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(X:S),nil) -> s(X:S) rev1(X:S,cons(Y:S,L:S)) -> rev1(Y:S,L:S) rev2(X:S,cons(Y:S,L:S)) -> rev(cons(X:S,rev(rev2(Y:S,L:S)))) rev2(X:S,nil) -> nil ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [rev](X) = X [rev1](X1,X2) = 2.X2 [rev2](X1,X2) = X2 [0] = 1 [cons](X1,X2) = 2.X2 + 2 [fSNonEmpty] = 0 [nil] = 2 [s](X) = 1 [REV](X) = X + 1 [REV1](X1,X2) = 0 [REV2](X1,X2) = X2 + 2 Problem 1.2: SCC Processor: -> Pairs: REV2(X:S,cons(Y:S,L:S)) -> REV(rev2(Y:S,L:S)) REV2(X:S,cons(Y:S,L:S)) -> REV(cons(X:S,rev(rev2(Y:S,L:S)))) REV2(X:S,cons(Y:S,L:S)) -> REV2(Y:S,L:S) -> Rules: rev(cons(X:S,L:S)) -> cons(rev1(X:S,L:S),rev2(X:S,L:S)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(X:S),nil) -> s(X:S) rev1(X:S,cons(Y:S,L:S)) -> rev1(Y:S,L:S) rev2(X:S,cons(Y:S,L:S)) -> rev(cons(X:S,rev(rev2(Y:S,L:S)))) rev2(X:S,nil) -> nil ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: REV2(X:S,cons(Y:S,L:S)) -> REV2(Y:S,L:S) ->->-> Rules: rev(cons(X:S,L:S)) -> cons(rev1(X:S,L:S),rev2(X:S,L:S)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(X:S),nil) -> s(X:S) rev1(X:S,cons(Y:S,L:S)) -> rev1(Y:S,L:S) rev2(X:S,cons(Y:S,L:S)) -> rev(cons(X:S,rev(rev2(Y:S,L:S)))) rev2(X:S,nil) -> nil Problem 1.2: Subterm Processor: -> Pairs: REV2(X:S,cons(Y:S,L:S)) -> REV2(Y:S,L:S) -> Rules: rev(cons(X:S,L:S)) -> cons(rev1(X:S,L:S),rev2(X:S,L:S)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(X:S),nil) -> s(X:S) rev1(X:S,cons(Y:S,L:S)) -> rev1(Y:S,L:S) rev2(X:S,cons(Y:S,L:S)) -> rev(cons(X:S,rev(rev2(Y:S,L:S)))) rev2(X:S,nil) -> nil ->Projection: pi(REV2) = 2 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: rev(cons(X:S,L:S)) -> cons(rev1(X:S,L:S),rev2(X:S,L:S)) rev(nil) -> nil rev1(0,nil) -> 0 rev1(s(X:S),nil) -> s(X:S) rev1(X:S,cons(Y:S,L:S)) -> rev1(Y:S,L:S) rev2(X:S,cons(Y:S,L:S)) -> rev(cons(X:S,rev(rev2(Y:S,L:S)))) rev2(X:S,nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite.