YES Prover = TRS(tech=GUIDED_UNF_TRIPLES, nb_unfoldings=unlimited, unfold_variables=false, max_nb_coefficients=12, max_nb_unfolded_rules=-1, strategy=LEFTMOST_NE) ** BEGIN proof argument ** All the DP problems were proved finite. As all the involved DP processors are sound, the TRS under analysis terminates. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## Round 1: ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2)), plus^#(s(_0),plus(_1,_2)) -> plus^#(s(s(_1)),_2), plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_2,plus(_1,_3)), plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_1,_3)] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Successfully decomposed the DP problem into smaller problems to solve! ## Round 2: ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),plus(_1,plus(_2,_3))) -> plus^#(_0,plus(_2,plus(_1,_3))), plus^#(s(_0),plus(_1,_2)) -> plus^#(_0,plus(s(s(_1)),_2))] TRS = {plus(s(_0),plus(_1,_2)) -> plus(_0,plus(s(s(_1)),_2)), plus(s(_0),plus(_1,plus(_2,_3))) -> plus(_0,plus(_2,plus(_1,_3)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the precedence: s > [plus] and the argument filtering: {plus:[0], s:[0], plus^#:[0]} This DP problem is finite. ** END proof description ** Proof stopped at iteration 0 Number of unfolded rules generated by this proof = 0 Number of unfolded rules generated by all the parallel proofs = 1670018