YES Problem 1: (VAR v_NonEmpty:S X:S) (RULES a__c -> c a__c -> d a__g(X:S) -> a__h(X:S) a__g(X:S) -> g(X:S) a__h(d) -> a__g(c) a__h(X:S) -> h(X:S) mark(c) -> a__c mark(d) -> d mark(g(X:S)) -> a__g(X:S) mark(h(X:S)) -> a__h(X:S) ) Problem 1: Dependency Pairs Processor: -> Pairs: A__G(X:S) -> A__H(X:S) A__H(d) -> A__G(c) MARK(c) -> A__C MARK(g(X:S)) -> A__G(X:S) MARK(h(X:S)) -> A__H(X:S) -> Rules: a__c -> c a__c -> d a__g(X:S) -> a__h(X:S) a__g(X:S) -> g(X:S) a__h(d) -> a__g(c) a__h(X:S) -> h(X:S) mark(c) -> a__c mark(d) -> d mark(g(X:S)) -> a__g(X:S) mark(h(X:S)) -> a__h(X:S) Problem 1: SCC Processor: -> Pairs: A__G(X:S) -> A__H(X:S) A__H(d) -> A__G(c) MARK(c) -> A__C MARK(g(X:S)) -> A__G(X:S) MARK(h(X:S)) -> A__H(X:S) -> Rules: a__c -> c a__c -> d a__g(X:S) -> a__h(X:S) a__g(X:S) -> g(X:S) a__h(d) -> a__g(c) a__h(X:S) -> h(X:S) mark(c) -> a__c mark(d) -> d mark(g(X:S)) -> a__g(X:S) mark(h(X:S)) -> a__h(X:S) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: A__G(X:S) -> A__H(X:S) A__H(d) -> A__G(c) ->->-> Rules: a__c -> c a__c -> d a__g(X:S) -> a__h(X:S) a__g(X:S) -> g(X:S) a__h(d) -> a__g(c) a__h(X:S) -> h(X:S) mark(c) -> a__c mark(d) -> d mark(g(X:S)) -> a__g(X:S) mark(h(X:S)) -> a__h(X:S) Problem 1: Reduction Pair Processor: -> Pairs: A__G(X:S) -> A__H(X:S) A__H(d) -> A__G(c) -> Rules: a__c -> c a__c -> d a__g(X:S) -> a__h(X:S) a__g(X:S) -> g(X:S) a__h(d) -> a__g(c) a__h(X:S) -> h(X:S) mark(c) -> a__c mark(d) -> d mark(g(X:S)) -> a__g(X:S) mark(h(X:S)) -> a__h(X:S) -> Usable rules: Empty ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [c] = 1 [d] = 2 [A__G](X) = 2.X + 2 [A__H](X) = 2.X + 1 Problem 1: SCC Processor: -> Pairs: A__H(d) -> A__G(c) -> Rules: a__c -> c a__c -> d a__g(X:S) -> a__h(X:S) a__g(X:S) -> g(X:S) a__h(d) -> a__g(c) a__h(X:S) -> h(X:S) mark(c) -> a__c mark(d) -> d mark(g(X:S)) -> a__g(X:S) mark(h(X:S)) -> a__h(X:S) ->Strongly Connected Components: There is no strongly connected component The problem is finite.