YES Problem 1: (VAR v_NonEmpty:S N:S X:S X1:S X2:S Y:S Z:S) (RULES 2ndsneg(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(negrecip(activate(Y:S)),2ndspos(N:S,activate(Z:S))) 2ndsneg(0,Z:S) -> rnil 2ndspos(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(posrecip(activate(Y:S)),2ndsneg(N:S,activate(Z:S))) 2ndspos(0,Z:S) -> rnil activate(n__cons(X1:S,X2:S)) -> cons(activate(X1:S),X2:S) activate(n__from(X:S)) -> from(activate(X:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(X:S) -> X:S cons(X1:S,X2:S) -> n__cons(X1:S,X2:S) from(X:S) -> cons(X:S,n__from(n__s(X:S))) from(X:S) -> n__from(X:S) pi(X:S) -> 2ndspos(X:S,from(0)) plus(s(X:S),Y:S) -> s(plus(X:S,Y:S)) plus(0,Y:S) -> Y:S s(X:S) -> n__s(X:S) square(X:S) -> times(X:S,X:S) times(s(X:S),Y:S) -> plus(Y:S,times(X:S,Y:S)) times(0,Y:S) -> 0 ) Problem 1: Dependency Pairs Processor: -> Pairs: 2NDSNEG(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> 2NDSPOS(N:S,activate(Z:S)) 2NDSNEG(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> ACTIVATE(Y:S) 2NDSNEG(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> ACTIVATE(Z:S) 2NDSPOS(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> 2NDSNEG(N:S,activate(Z:S)) 2NDSPOS(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> ACTIVATE(Y:S) 2NDSPOS(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> ACTIVATE(Z:S) ACTIVATE(n__cons(X1:S,X2:S)) -> ACTIVATE(X1:S) ACTIVATE(n__cons(X1:S,X2:S)) -> CONS(activate(X1:S),X2:S) ACTIVATE(n__from(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__from(X:S)) -> FROM(activate(X:S)) ACTIVATE(n__s(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__s(X:S)) -> S(activate(X:S)) FROM(X:S) -> CONS(X:S,n__from(n__s(X:S))) PI(X:S) -> 2NDSPOS(X:S,from(0)) PI(X:S) -> FROM(0) PLUS(s(X:S),Y:S) -> PLUS(X:S,Y:S) PLUS(s(X:S),Y:S) -> S(plus(X:S,Y:S)) SQUARE(X:S) -> TIMES(X:S,X:S) TIMES(s(X:S),Y:S) -> PLUS(Y:S,times(X:S,Y:S)) TIMES(s(X:S),Y:S) -> TIMES(X:S,Y:S) -> Rules: 2ndsneg(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(negrecip(activate(Y:S)),2ndspos(N:S,activate(Z:S))) 2ndsneg(0,Z:S) -> rnil 2ndspos(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(posrecip(activate(Y:S)),2ndsneg(N:S,activate(Z:S))) 2ndspos(0,Z:S) -> rnil activate(n__cons(X1:S,X2:S)) -> cons(activate(X1:S),X2:S) activate(n__from(X:S)) -> from(activate(X:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(X:S) -> X:S cons(X1:S,X2:S) -> n__cons(X1:S,X2:S) from(X:S) -> cons(X:S,n__from(n__s(X:S))) from(X:S) -> n__from(X:S) pi(X:S) -> 2ndspos(X:S,from(0)) plus(s(X:S),Y:S) -> s(plus(X:S,Y:S)) plus(0,Y:S) -> Y:S s(X:S) -> n__s(X:S) square(X:S) -> times(X:S,X:S) times(s(X:S),Y:S) -> plus(Y:S,times(X:S,Y:S)) times(0,Y:S) -> 0 Problem 1: SCC Processor: -> Pairs: 2NDSNEG(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> 2NDSPOS(N:S,activate(Z:S)) 2NDSNEG(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> ACTIVATE(Y:S) 2NDSNEG(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> ACTIVATE(Z:S) 2NDSPOS(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> 2NDSNEG(N:S,activate(Z:S)) 2NDSPOS(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> ACTIVATE(Y:S) 2NDSPOS(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> ACTIVATE(Z:S) ACTIVATE(n__cons(X1:S,X2:S)) -> ACTIVATE(X1:S) ACTIVATE(n__cons(X1:S,X2:S)) -> CONS(activate(X1:S),X2:S) ACTIVATE(n__from(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__from(X:S)) -> FROM(activate(X:S)) ACTIVATE(n__s(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__s(X:S)) -> S(activate(X:S)) FROM(X:S) -> CONS(X:S,n__from(n__s(X:S))) PI(X:S) -> 2NDSPOS(X:S,from(0)) PI(X:S) -> FROM(0) PLUS(s(X:S),Y:S) -> PLUS(X:S,Y:S) PLUS(s(X:S),Y:S) -> S(plus(X:S,Y:S)) SQUARE(X:S) -> TIMES(X:S,X:S) TIMES(s(X:S),Y:S) -> PLUS(Y:S,times(X:S,Y:S)) TIMES(s(X:S),Y:S) -> TIMES(X:S,Y:S) -> Rules: 2ndsneg(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(negrecip(activate(Y:S)),2ndspos(N:S,activate(Z:S))) 2ndsneg(0,Z:S) -> rnil 2ndspos(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(posrecip(activate(Y:S)),2ndsneg(N:S,activate(Z:S))) 2ndspos(0,Z:S) -> rnil activate(n__cons(X1:S,X2:S)) -> cons(activate(X1:S),X2:S) activate(n__from(X:S)) -> from(activate(X:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(X:S) -> X:S cons(X1:S,X2:S) -> n__cons(X1:S,X2:S) from(X:S) -> cons(X:S,n__from(n__s(X:S))) from(X:S) -> n__from(X:S) pi(X:S) -> 2ndspos(X:S,from(0)) plus(s(X:S),Y:S) -> s(plus(X:S,Y:S)) plus(0,Y:S) -> Y:S s(X:S) -> n__s(X:S) square(X:S) -> times(X:S,X:S) times(s(X:S),Y:S) -> plus(Y:S,times(X:S,Y:S)) times(0,Y:S) -> 0 ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: PLUS(s(X:S),Y:S) -> PLUS(X:S,Y:S) ->->-> Rules: 2ndsneg(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(negrecip(activate(Y:S)),2ndspos(N:S,activate(Z:S))) 2ndsneg(0,Z:S) -> rnil 2ndspos(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(posrecip(activate(Y:S)),2ndsneg(N:S,activate(Z:S))) 2ndspos(0,Z:S) -> rnil activate(n__cons(X1:S,X2:S)) -> cons(activate(X1:S),X2:S) activate(n__from(X:S)) -> from(activate(X:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(X:S) -> X:S cons(X1:S,X2:S) -> n__cons(X1:S,X2:S) from(X:S) -> cons(X:S,n__from(n__s(X:S))) from(X:S) -> n__from(X:S) pi(X:S) -> 2ndspos(X:S,from(0)) plus(s(X:S),Y:S) -> s(plus(X:S,Y:S)) plus(0,Y:S) -> Y:S s(X:S) -> n__s(X:S) square(X:S) -> times(X:S,X:S) times(s(X:S),Y:S) -> plus(Y:S,times(X:S,Y:S)) times(0,Y:S) -> 0 ->->Cycle: ->->-> Pairs: TIMES(s(X:S),Y:S) -> TIMES(X:S,Y:S) ->->-> Rules: 2ndsneg(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(negrecip(activate(Y:S)),2ndspos(N:S,activate(Z:S))) 2ndsneg(0,Z:S) -> rnil 2ndspos(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(posrecip(activate(Y:S)),2ndsneg(N:S,activate(Z:S))) 2ndspos(0,Z:S) -> rnil activate(n__cons(X1:S,X2:S)) -> cons(activate(X1:S),X2:S) activate(n__from(X:S)) -> from(activate(X:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(X:S) -> X:S cons(X1:S,X2:S) -> n__cons(X1:S,X2:S) from(X:S) -> cons(X:S,n__from(n__s(X:S))) from(X:S) -> n__from(X:S) pi(X:S) -> 2ndspos(X:S,from(0)) plus(s(X:S),Y:S) -> s(plus(X:S,Y:S)) plus(0,Y:S) -> Y:S s(X:S) -> n__s(X:S) square(X:S) -> times(X:S,X:S) times(s(X:S),Y:S) -> plus(Y:S,times(X:S,Y:S)) times(0,Y:S) -> 0 ->->Cycle: ->->-> Pairs: ACTIVATE(n__cons(X1:S,X2:S)) -> ACTIVATE(X1:S) ACTIVATE(n__from(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__s(X:S)) -> ACTIVATE(X:S) ->->-> Rules: 2ndsneg(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(negrecip(activate(Y:S)),2ndspos(N:S,activate(Z:S))) 2ndsneg(0,Z:S) -> rnil 2ndspos(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(posrecip(activate(Y:S)),2ndsneg(N:S,activate(Z:S))) 2ndspos(0,Z:S) -> rnil activate(n__cons(X1:S,X2:S)) -> cons(activate(X1:S),X2:S) activate(n__from(X:S)) -> from(activate(X:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(X:S) -> X:S cons(X1:S,X2:S) -> n__cons(X1:S,X2:S) from(X:S) -> cons(X:S,n__from(n__s(X:S))) from(X:S) -> n__from(X:S) pi(X:S) -> 2ndspos(X:S,from(0)) plus(s(X:S),Y:S) -> s(plus(X:S,Y:S)) plus(0,Y:S) -> Y:S s(X:S) -> n__s(X:S) square(X:S) -> times(X:S,X:S) times(s(X:S),Y:S) -> plus(Y:S,times(X:S,Y:S)) times(0,Y:S) -> 0 ->->Cycle: ->->-> Pairs: 2NDSNEG(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> 2NDSPOS(N:S,activate(Z:S)) 2NDSPOS(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> 2NDSNEG(N:S,activate(Z:S)) ->->-> Rules: 2ndsneg(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(negrecip(activate(Y:S)),2ndspos(N:S,activate(Z:S))) 2ndsneg(0,Z:S) -> rnil 2ndspos(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(posrecip(activate(Y:S)),2ndsneg(N:S,activate(Z:S))) 2ndspos(0,Z:S) -> rnil activate(n__cons(X1:S,X2:S)) -> cons(activate(X1:S),X2:S) activate(n__from(X:S)) -> from(activate(X:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(X:S) -> X:S cons(X1:S,X2:S) -> n__cons(X1:S,X2:S) from(X:S) -> cons(X:S,n__from(n__s(X:S))) from(X:S) -> n__from(X:S) pi(X:S) -> 2ndspos(X:S,from(0)) plus(s(X:S),Y:S) -> s(plus(X:S,Y:S)) plus(0,Y:S) -> Y:S s(X:S) -> n__s(X:S) square(X:S) -> times(X:S,X:S) times(s(X:S),Y:S) -> plus(Y:S,times(X:S,Y:S)) times(0,Y:S) -> 0 The problem is decomposed in 4 subproblems. Problem 1.1: Subterm Processor: -> Pairs: PLUS(s(X:S),Y:S) -> PLUS(X:S,Y:S) -> Rules: 2ndsneg(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(negrecip(activate(Y:S)),2ndspos(N:S,activate(Z:S))) 2ndsneg(0,Z:S) -> rnil 2ndspos(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(posrecip(activate(Y:S)),2ndsneg(N:S,activate(Z:S))) 2ndspos(0,Z:S) -> rnil activate(n__cons(X1:S,X2:S)) -> cons(activate(X1:S),X2:S) activate(n__from(X:S)) -> from(activate(X:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(X:S) -> X:S cons(X1:S,X2:S) -> n__cons(X1:S,X2:S) from(X:S) -> cons(X:S,n__from(n__s(X:S))) from(X:S) -> n__from(X:S) pi(X:S) -> 2ndspos(X:S,from(0)) plus(s(X:S),Y:S) -> s(plus(X:S,Y:S)) plus(0,Y:S) -> Y:S s(X:S) -> n__s(X:S) square(X:S) -> times(X:S,X:S) times(s(X:S),Y:S) -> plus(Y:S,times(X:S,Y:S)) times(0,Y:S) -> 0 ->Projection: pi(PLUS) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: 2ndsneg(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(negrecip(activate(Y:S)),2ndspos(N:S,activate(Z:S))) 2ndsneg(0,Z:S) -> rnil 2ndspos(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(posrecip(activate(Y:S)),2ndsneg(N:S,activate(Z:S))) 2ndspos(0,Z:S) -> rnil activate(n__cons(X1:S,X2:S)) -> cons(activate(X1:S),X2:S) activate(n__from(X:S)) -> from(activate(X:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(X:S) -> X:S cons(X1:S,X2:S) -> n__cons(X1:S,X2:S) from(X:S) -> cons(X:S,n__from(n__s(X:S))) from(X:S) -> n__from(X:S) pi(X:S) -> 2ndspos(X:S,from(0)) plus(s(X:S),Y:S) -> s(plus(X:S,Y:S)) plus(0,Y:S) -> Y:S s(X:S) -> n__s(X:S) square(X:S) -> times(X:S,X:S) times(s(X:S),Y:S) -> plus(Y:S,times(X:S,Y:S)) times(0,Y:S) -> 0 ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: TIMES(s(X:S),Y:S) -> TIMES(X:S,Y:S) -> Rules: 2ndsneg(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(negrecip(activate(Y:S)),2ndspos(N:S,activate(Z:S))) 2ndsneg(0,Z:S) -> rnil 2ndspos(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(posrecip(activate(Y:S)),2ndsneg(N:S,activate(Z:S))) 2ndspos(0,Z:S) -> rnil activate(n__cons(X1:S,X2:S)) -> cons(activate(X1:S),X2:S) activate(n__from(X:S)) -> from(activate(X:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(X:S) -> X:S cons(X1:S,X2:S) -> n__cons(X1:S,X2:S) from(X:S) -> cons(X:S,n__from(n__s(X:S))) from(X:S) -> n__from(X:S) pi(X:S) -> 2ndspos(X:S,from(0)) plus(s(X:S),Y:S) -> s(plus(X:S,Y:S)) plus(0,Y:S) -> Y:S s(X:S) -> n__s(X:S) square(X:S) -> times(X:S,X:S) times(s(X:S),Y:S) -> plus(Y:S,times(X:S,Y:S)) times(0,Y:S) -> 0 ->Projection: pi(TIMES) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: 2ndsneg(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(negrecip(activate(Y:S)),2ndspos(N:S,activate(Z:S))) 2ndsneg(0,Z:S) -> rnil 2ndspos(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(posrecip(activate(Y:S)),2ndsneg(N:S,activate(Z:S))) 2ndspos(0,Z:S) -> rnil activate(n__cons(X1:S,X2:S)) -> cons(activate(X1:S),X2:S) activate(n__from(X:S)) -> from(activate(X:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(X:S) -> X:S cons(X1:S,X2:S) -> n__cons(X1:S,X2:S) from(X:S) -> cons(X:S,n__from(n__s(X:S))) from(X:S) -> n__from(X:S) pi(X:S) -> 2ndspos(X:S,from(0)) plus(s(X:S),Y:S) -> s(plus(X:S,Y:S)) plus(0,Y:S) -> Y:S s(X:S) -> n__s(X:S) square(X:S) -> times(X:S,X:S) times(s(X:S),Y:S) -> plus(Y:S,times(X:S,Y:S)) times(0,Y:S) -> 0 ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Subterm Processor: -> Pairs: ACTIVATE(n__cons(X1:S,X2:S)) -> ACTIVATE(X1:S) ACTIVATE(n__from(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__s(X:S)) -> ACTIVATE(X:S) -> Rules: 2ndsneg(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(negrecip(activate(Y:S)),2ndspos(N:S,activate(Z:S))) 2ndsneg(0,Z:S) -> rnil 2ndspos(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(posrecip(activate(Y:S)),2ndsneg(N:S,activate(Z:S))) 2ndspos(0,Z:S) -> rnil activate(n__cons(X1:S,X2:S)) -> cons(activate(X1:S),X2:S) activate(n__from(X:S)) -> from(activate(X:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(X:S) -> X:S cons(X1:S,X2:S) -> n__cons(X1:S,X2:S) from(X:S) -> cons(X:S,n__from(n__s(X:S))) from(X:S) -> n__from(X:S) pi(X:S) -> 2ndspos(X:S,from(0)) plus(s(X:S),Y:S) -> s(plus(X:S,Y:S)) plus(0,Y:S) -> Y:S s(X:S) -> n__s(X:S) square(X:S) -> times(X:S,X:S) times(s(X:S),Y:S) -> plus(Y:S,times(X:S,Y:S)) times(0,Y:S) -> 0 ->Projection: pi(ACTIVATE) = 1 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: 2ndsneg(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(negrecip(activate(Y:S)),2ndspos(N:S,activate(Z:S))) 2ndsneg(0,Z:S) -> rnil 2ndspos(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(posrecip(activate(Y:S)),2ndsneg(N:S,activate(Z:S))) 2ndspos(0,Z:S) -> rnil activate(n__cons(X1:S,X2:S)) -> cons(activate(X1:S),X2:S) activate(n__from(X:S)) -> from(activate(X:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(X:S) -> X:S cons(X1:S,X2:S) -> n__cons(X1:S,X2:S) from(X:S) -> cons(X:S,n__from(n__s(X:S))) from(X:S) -> n__from(X:S) pi(X:S) -> 2ndspos(X:S,from(0)) plus(s(X:S),Y:S) -> s(plus(X:S,Y:S)) plus(0,Y:S) -> Y:S s(X:S) -> n__s(X:S) square(X:S) -> times(X:S,X:S) times(s(X:S),Y:S) -> plus(Y:S,times(X:S,Y:S)) times(0,Y:S) -> 0 ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.4: Subterm Processor: -> Pairs: 2NDSNEG(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> 2NDSPOS(N:S,activate(Z:S)) 2NDSPOS(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> 2NDSNEG(N:S,activate(Z:S)) -> Rules: 2ndsneg(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(negrecip(activate(Y:S)),2ndspos(N:S,activate(Z:S))) 2ndsneg(0,Z:S) -> rnil 2ndspos(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(posrecip(activate(Y:S)),2ndsneg(N:S,activate(Z:S))) 2ndspos(0,Z:S) -> rnil activate(n__cons(X1:S,X2:S)) -> cons(activate(X1:S),X2:S) activate(n__from(X:S)) -> from(activate(X:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(X:S) -> X:S cons(X1:S,X2:S) -> n__cons(X1:S,X2:S) from(X:S) -> cons(X:S,n__from(n__s(X:S))) from(X:S) -> n__from(X:S) pi(X:S) -> 2ndspos(X:S,from(0)) plus(s(X:S),Y:S) -> s(plus(X:S,Y:S)) plus(0,Y:S) -> Y:S s(X:S) -> n__s(X:S) square(X:S) -> times(X:S,X:S) times(s(X:S),Y:S) -> plus(Y:S,times(X:S,Y:S)) times(0,Y:S) -> 0 ->Projection: pi(2NDSNEG) = 1 pi(2NDSPOS) = 1 Problem 1.4: SCC Processor: -> Pairs: Empty -> Rules: 2ndsneg(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(negrecip(activate(Y:S)),2ndspos(N:S,activate(Z:S))) 2ndsneg(0,Z:S) -> rnil 2ndspos(s(N:S),cons(X:S,n__cons(Y:S,Z:S))) -> rcons(posrecip(activate(Y:S)),2ndsneg(N:S,activate(Z:S))) 2ndspos(0,Z:S) -> rnil activate(n__cons(X1:S,X2:S)) -> cons(activate(X1:S),X2:S) activate(n__from(X:S)) -> from(activate(X:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(X:S) -> X:S cons(X1:S,X2:S) -> n__cons(X1:S,X2:S) from(X:S) -> cons(X:S,n__from(n__s(X:S))) from(X:S) -> n__from(X:S) pi(X:S) -> 2ndspos(X:S,from(0)) plus(s(X:S),Y:S) -> s(plus(X:S,Y:S)) plus(0,Y:S) -> Y:S s(X:S) -> n__s(X:S) square(X:S) -> times(X:S,X:S) times(s(X:S),Y:S) -> plus(Y:S,times(X:S,Y:S)) times(0,Y:S) -> 0 ->Strongly Connected Components: There is no strongly connected component The problem is finite.