NO Prover = TRS(tech=GUIDED_UNF_TRIPLES, nb_unfoldings=unlimited, unfold_variables=false, max_nb_coefficients=12, max_nb_unfolded_rules=-1, strategy=LEFTMOST_NE) ** BEGIN proof argument ** The following rule was generated while unfolding the analyzed TRS: [iteration = 5] active(f(b,mark(c),c)) -> active(f(b,mark(c),c)) Let l be the left-hand side and r be the right-hand side of this rule. Let p = epsilon, theta1 = {} and theta2 = {}. We have r|p = active(f(b,mark(c),c)) and theta2(theta1(l)) = theta1(r|p). Hence, the term theta1(l) = active(f(b,mark(c),c)) loops w.r.t. the analyzed TRS. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## Round 1: ## DP problem: Dependency pairs = [active^#(f(b,_0,c)) -> mark^#(f(_0,c,_0)), mark^#(f(_0,_1,_2)) -> active^#(f(_0,mark(_1),_2)), mark^#(f(_0,_1,_2)) -> mark^#(_1)] TRS = {active(f(b,_0,c)) -> mark(f(_0,c,_0)), active(c) -> mark(b), mark(f(_0,_1,_2)) -> active(f(_0,mark(_1),_2)), mark(b) -> active(b), mark(c) -> active(c), f(mark(_0),_1,_2) -> f(_0,_1,_2), f(_0,mark(_1),_2) -> f(_0,_1,_2), f(_0,_1,mark(_2)) -> f(_0,_1,_2), f(active(_0),_1,_2) -> f(_0,_1,_2), f(_0,active(_1),_2) -> f(_0,_1,_2), f(_0,_1,active(_2)) -> f(_0,_1,_2)} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Too many coefficients (15)! Aborting! ## Trying with lexicographic path orders... Failed! ## Trying to prove nontermination by unfolding the dependency pairs with the rules of the TRS # max_depth=3, unfold_variables=false: # Iteration 0: nontermination not detected, 3 unfolded rules generated. # Iteration 1: nontermination not detected, 8 unfolded rules generated. # Iteration 2: nontermination not detected, 48 unfolded rules generated. # Iteration 3: nontermination not detected, 134 unfolded rules generated. # Iteration 4: nontermination not detected, 279 unfolded rules generated. # Iteration 5: nontermination detected, 26 unfolded rules generated. Here is the successful unfolding. Let IR be the TRS under analysis. L0 = active^#(f(b,_0,c)) -> mark^#(f(_0,c,_0)) [trans] is in U_IR^0. D = mark^#(f(_0,_1,_2)) -> active^#(f(_0,mark(_1),_2)) is a dependency pair of IR. We build a composed triple from L0 and D. ==> L1 = [active^#(f(b,_0,c)) -> mark^#(f(_0,c,_0)), mark^#(f(_1,_2,_3)) -> active^#(f(_1,mark(_2),_3))] [comp] is in U_IR^1. Let p1 = [0]. We unfold the first rule of L1 forwards at position p1 with the rule f(_0,_1,mark(_2)) -> f(_0,_1,_2). ==> L2 = [active^#(f(b,mark(_0),c)) -> mark^#(f(mark(_0),c,_0)), mark^#(f(_1,_2,_3)) -> active^#(f(_1,mark(_2),_3))] [comp] is in U_IR^2. Let p2 = [0, 0]. We unfold the first rule of L2 forwards at position p2 with the rule mark(c) -> active(c). ==> L3 = [active^#(f(b,mark(c),c)) -> mark^#(f(active(c),c,c)), mark^#(f(_0,_1,_2)) -> active^#(f(_0,mark(_1),_2))] [comp] is in U_IR^3. Let p3 = [0, 0]. We unfold the first rule of L3 forwards at position p3 with the rule active(c) -> mark(b). ==> L4 = [active^#(f(b,mark(c),c)) -> mark^#(f(mark(b),c,c)), mark^#(f(_0,_1,_2)) -> active^#(f(_0,mark(_1),_2))] [comp] is in U_IR^4. Let p4 = [0]. We unfold the first rule of L4 forwards at position p4 with the rule f(mark(_0),_1,_2) -> f(_0,_1,_2). ==> L5 = active^#(f(b,mark(c),c)) -> active^#(f(b,mark(c),c)) [trans] is in U_IR^5. This DP problem is infinite. ** END proof description ** Proof stopped at iteration 5 Number of unfolded rules generated by this proof = 498 Number of unfolded rules generated by all the parallel proofs = 2247