YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRSRRRProof [EQUIVALENT, 39 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 1 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) QDP (7) QDPOrderProof [EQUIVALENT, 0 ms] (8) QDP (9) QDPOrderProof [EQUIVALENT, 0 ms] (10) QDP (11) DependencyGraphProof [EQUIVALENT, 0 ms] (12) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(f(X)) -> c(n__f(n__g(n__f(X)))) c(X) -> d(activate(X)) h(X) -> c(n__d(X)) f(X) -> n__f(X) g(X) -> n__g(X) d(X) -> n__d(X) activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(X) activate(n__d(X)) -> d(X) activate(X) -> X Q is empty. ---------------------------------------- (1) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(activate(x_1)) = x_1 POL(c(x_1)) = x_1 POL(d(x_1)) = x_1 POL(f(x_1)) = x_1 POL(g(x_1)) = x_1 POL(h(x_1)) = 1 + x_1 POL(n__d(x_1)) = x_1 POL(n__f(x_1)) = x_1 POL(n__g(x_1)) = x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: h(X) -> c(n__d(X)) ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(f(X)) -> c(n__f(n__g(n__f(X)))) c(X) -> d(activate(X)) f(X) -> n__f(X) g(X) -> n__g(X) d(X) -> n__d(X) activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(X) activate(n__d(X)) -> d(X) activate(X) -> X Q is empty. ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(X)) -> C(n__f(n__g(n__f(X)))) C(X) -> D(activate(X)) C(X) -> ACTIVATE(X) ACTIVATE(n__f(X)) -> F(activate(X)) ACTIVATE(n__f(X)) -> ACTIVATE(X) ACTIVATE(n__g(X)) -> G(X) ACTIVATE(n__d(X)) -> D(X) The TRS R consists of the following rules: f(f(X)) -> c(n__f(n__g(n__f(X)))) c(X) -> d(activate(X)) f(X) -> n__f(X) g(X) -> n__g(X) d(X) -> n__d(X) activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(X) activate(n__d(X)) -> d(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: C(X) -> ACTIVATE(X) ACTIVATE(n__f(X)) -> F(activate(X)) F(f(X)) -> C(n__f(n__g(n__f(X)))) ACTIVATE(n__f(X)) -> ACTIVATE(X) The TRS R consists of the following rules: f(f(X)) -> c(n__f(n__g(n__f(X)))) c(X) -> d(activate(X)) f(X) -> n__f(X) g(X) -> n__g(X) d(X) -> n__d(X) activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(X) activate(n__d(X)) -> d(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__f(X)) -> ACTIVATE(X) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(ACTIVATE(x_1)) = x_1 POL(C(x_1)) = x_1 POL(F(x_1)) = 1 POL(activate(x_1)) = 0 POL(c(x_1)) = 1 POL(d(x_1)) = 1 + x_1 POL(f(x_1)) = 0 POL(g(x_1)) = 1 + x_1 POL(n__d(x_1)) = 1 + x_1 POL(n__f(x_1)) = 1 + x_1 POL(n__g(x_1)) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: C(X) -> ACTIVATE(X) ACTIVATE(n__f(X)) -> F(activate(X)) F(f(X)) -> C(n__f(n__g(n__f(X)))) The TRS R consists of the following rules: f(f(X)) -> c(n__f(n__g(n__f(X)))) c(X) -> d(activate(X)) f(X) -> n__f(X) g(X) -> n__g(X) d(X) -> n__d(X) activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(X) activate(n__d(X)) -> d(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__f(X)) -> F(activate(X)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( F_1(x_1) ) = x_1 + 2 POL( activate_1(x_1) ) = 2x_1 POL( n__f_1(x_1) ) = x_1 + 1 POL( f_1(x_1) ) = x_1 + 2 POL( n__g_1(x_1) ) = max{0, -2} POL( g_1(x_1) ) = 0 POL( n__d_1(x_1) ) = 0 POL( d_1(x_1) ) = max{0, -2} POL( c_1(x_1) ) = x_1 + 2 POL( C_1(x_1) ) = 2x_1 + 2 POL( ACTIVATE_1(x_1) ) = 2x_1 + 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(X) activate(n__d(X)) -> d(X) activate(X) -> X f(f(X)) -> c(n__f(n__g(n__f(X)))) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) g(X) -> n__g(X) ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: C(X) -> ACTIVATE(X) F(f(X)) -> C(n__f(n__g(n__f(X)))) The TRS R consists of the following rules: f(f(X)) -> c(n__f(n__g(n__f(X)))) c(X) -> d(activate(X)) f(X) -> n__f(X) g(X) -> n__g(X) d(X) -> n__d(X) activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(X) activate(n__d(X)) -> d(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes. ---------------------------------------- (12) TRUE