YES Problem 1: (VAR v_NonEmpty:S X:S) (RULES activate(n__d(X:S)) -> d(X:S) activate(n__f(X:S)) -> f(activate(X:S)) activate(n__g(X:S)) -> g(X:S) activate(X:S) -> X:S c(X:S) -> d(activate(X:S)) d(X:S) -> n__d(X:S) f(f(X:S)) -> c(n__f(n__g(n__f(X:S)))) f(X:S) -> n__f(X:S) g(X:S) -> n__g(X:S) h(X:S) -> c(n__d(X:S)) ) Problem 1: Dependency Pairs Processor: -> Pairs: ACTIVATE(n__d(X:S)) -> D(X:S) ACTIVATE(n__f(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__f(X:S)) -> F(activate(X:S)) ACTIVATE(n__g(X:S)) -> G(X:S) C(X:S) -> ACTIVATE(X:S) C(X:S) -> D(activate(X:S)) F(f(X:S)) -> C(n__f(n__g(n__f(X:S)))) H(X:S) -> C(n__d(X:S)) -> Rules: activate(n__d(X:S)) -> d(X:S) activate(n__f(X:S)) -> f(activate(X:S)) activate(n__g(X:S)) -> g(X:S) activate(X:S) -> X:S c(X:S) -> d(activate(X:S)) d(X:S) -> n__d(X:S) f(f(X:S)) -> c(n__f(n__g(n__f(X:S)))) f(X:S) -> n__f(X:S) g(X:S) -> n__g(X:S) h(X:S) -> c(n__d(X:S)) Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__d(X:S)) -> D(X:S) ACTIVATE(n__f(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__f(X:S)) -> F(activate(X:S)) ACTIVATE(n__g(X:S)) -> G(X:S) C(X:S) -> ACTIVATE(X:S) C(X:S) -> D(activate(X:S)) F(f(X:S)) -> C(n__f(n__g(n__f(X:S)))) H(X:S) -> C(n__d(X:S)) -> Rules: activate(n__d(X:S)) -> d(X:S) activate(n__f(X:S)) -> f(activate(X:S)) activate(n__g(X:S)) -> g(X:S) activate(X:S) -> X:S c(X:S) -> d(activate(X:S)) d(X:S) -> n__d(X:S) f(f(X:S)) -> c(n__f(n__g(n__f(X:S)))) f(X:S) -> n__f(X:S) g(X:S) -> n__g(X:S) h(X:S) -> c(n__d(X:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__f(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__f(X:S)) -> F(activate(X:S)) C(X:S) -> ACTIVATE(X:S) F(f(X:S)) -> C(n__f(n__g(n__f(X:S)))) ->->-> Rules: activate(n__d(X:S)) -> d(X:S) activate(n__f(X:S)) -> f(activate(X:S)) activate(n__g(X:S)) -> g(X:S) activate(X:S) -> X:S c(X:S) -> d(activate(X:S)) d(X:S) -> n__d(X:S) f(f(X:S)) -> c(n__f(n__g(n__f(X:S)))) f(X:S) -> n__f(X:S) g(X:S) -> n__g(X:S) h(X:S) -> c(n__d(X:S)) Problem 1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__f(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__f(X:S)) -> F(activate(X:S)) C(X:S) -> ACTIVATE(X:S) F(f(X:S)) -> C(n__f(n__g(n__f(X:S)))) -> Rules: activate(n__d(X:S)) -> d(X:S) activate(n__f(X:S)) -> f(activate(X:S)) activate(n__g(X:S)) -> g(X:S) activate(X:S) -> X:S c(X:S) -> d(activate(X:S)) d(X:S) -> n__d(X:S) f(f(X:S)) -> c(n__f(n__g(n__f(X:S)))) f(X:S) -> n__f(X:S) g(X:S) -> n__g(X:S) h(X:S) -> c(n__d(X:S)) -> Usable rules: activate(n__d(X:S)) -> d(X:S) activate(n__f(X:S)) -> f(activate(X:S)) activate(n__g(X:S)) -> g(X:S) activate(X:S) -> X:S c(X:S) -> d(activate(X:S)) d(X:S) -> n__d(X:S) f(f(X:S)) -> c(n__f(n__g(n__f(X:S)))) f(X:S) -> n__f(X:S) g(X:S) -> n__g(X:S) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [c](X) = X [d](X) = X [f](X) = X + 1 [g](X) = X [n__d](X) = X [n__f](X) = X + 1 [n__g](X) = X [ACTIVATE](X) = X [C](X) = X [F](X) = X + 1 Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__f(X:S)) -> F(activate(X:S)) C(X:S) -> ACTIVATE(X:S) F(f(X:S)) -> C(n__f(n__g(n__f(X:S)))) -> Rules: activate(n__d(X:S)) -> d(X:S) activate(n__f(X:S)) -> f(activate(X:S)) activate(n__g(X:S)) -> g(X:S) activate(X:S) -> X:S c(X:S) -> d(activate(X:S)) d(X:S) -> n__d(X:S) f(f(X:S)) -> c(n__f(n__g(n__f(X:S)))) f(X:S) -> n__f(X:S) g(X:S) -> n__g(X:S) h(X:S) -> c(n__d(X:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__f(X:S)) -> F(activate(X:S)) C(X:S) -> ACTIVATE(X:S) F(f(X:S)) -> C(n__f(n__g(n__f(X:S)))) ->->-> Rules: activate(n__d(X:S)) -> d(X:S) activate(n__f(X:S)) -> f(activate(X:S)) activate(n__g(X:S)) -> g(X:S) activate(X:S) -> X:S c(X:S) -> d(activate(X:S)) d(X:S) -> n__d(X:S) f(f(X:S)) -> c(n__f(n__g(n__f(X:S)))) f(X:S) -> n__f(X:S) g(X:S) -> n__g(X:S) h(X:S) -> c(n__d(X:S)) Problem 1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__f(X:S)) -> F(activate(X:S)) C(X:S) -> ACTIVATE(X:S) F(f(X:S)) -> C(n__f(n__g(n__f(X:S)))) -> Rules: activate(n__d(X:S)) -> d(X:S) activate(n__f(X:S)) -> f(activate(X:S)) activate(n__g(X:S)) -> g(X:S) activate(X:S) -> X:S c(X:S) -> d(activate(X:S)) d(X:S) -> n__d(X:S) f(f(X:S)) -> c(n__f(n__g(n__f(X:S)))) f(X:S) -> n__f(X:S) g(X:S) -> n__g(X:S) h(X:S) -> c(n__d(X:S)) -> Usable rules: activate(n__d(X:S)) -> d(X:S) activate(n__f(X:S)) -> f(activate(X:S)) activate(n__g(X:S)) -> g(X:S) activate(X:S) -> X:S c(X:S) -> d(activate(X:S)) d(X:S) -> n__d(X:S) f(f(X:S)) -> c(n__f(n__g(n__f(X:S)))) f(X:S) -> n__f(X:S) g(X:S) -> n__g(X:S) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = 2.X + 1 [c](X) = 2 [d](X) = 2 [f](X) = 2.X + 2 [g](X) = 1 [n__d](X) = 2 [n__f](X) = 2.X + 2 [n__g](X) = 0 [ACTIVATE](X) = 2.X [C](X) = 2.X [F](X) = X + 2 Problem 1: SCC Processor: -> Pairs: C(X:S) -> ACTIVATE(X:S) F(f(X:S)) -> C(n__f(n__g(n__f(X:S)))) -> Rules: activate(n__d(X:S)) -> d(X:S) activate(n__f(X:S)) -> f(activate(X:S)) activate(n__g(X:S)) -> g(X:S) activate(X:S) -> X:S c(X:S) -> d(activate(X:S)) d(X:S) -> n__d(X:S) f(f(X:S)) -> c(n__f(n__g(n__f(X:S)))) f(X:S) -> n__f(X:S) g(X:S) -> n__g(X:S) h(X:S) -> c(n__d(X:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite.