YES Problem: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X Proof: DP Processor: DPs: terms#(N) -> s#(N) terms#(N) -> sqr#(N) sqr#(s(X)) -> dbl#(activate(X)) sqr#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) sqr#(s(X)) -> s#(n__add(sqr(activate(X)),dbl(activate(X)))) dbl#(s(X)) -> activate#(X) dbl#(s(X)) -> s#(n__s(n__dbl(activate(X)))) add#(s(X),Y) -> activate#(X) add#(s(X),Y) -> s#(n__add(activate(X),Y)) first#(s(X),cons(Y,Z)) -> activate#(Z) first#(s(X),cons(Y,Z)) -> activate#(X) activate#(n__terms(X)) -> terms#(X) activate#(n__add(X1,X2)) -> add#(X1,X2) activate#(n__s(X)) -> s#(X) activate#(n__dbl(X)) -> dbl#(X) activate#(n__first(X1,X2)) -> first#(X1,X2) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X TDG Processor: DPs: terms#(N) -> s#(N) terms#(N) -> sqr#(N) sqr#(s(X)) -> dbl#(activate(X)) sqr#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) sqr#(s(X)) -> s#(n__add(sqr(activate(X)),dbl(activate(X)))) dbl#(s(X)) -> activate#(X) dbl#(s(X)) -> s#(n__s(n__dbl(activate(X)))) add#(s(X),Y) -> activate#(X) add#(s(X),Y) -> s#(n__add(activate(X),Y)) first#(s(X),cons(Y,Z)) -> activate#(Z) first#(s(X),cons(Y,Z)) -> activate#(X) activate#(n__terms(X)) -> terms#(X) activate#(n__add(X1,X2)) -> add#(X1,X2) activate#(n__s(X)) -> s#(X) activate#(n__dbl(X)) -> dbl#(X) activate#(n__first(X1,X2)) -> first#(X1,X2) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X graph: first#(s(X),cons(Y,Z)) -> activate#(Z) -> activate#(n__first(X1,X2)) -> first#(X1,X2) first#(s(X),cons(Y,Z)) -> activate#(Z) -> activate#(n__dbl(X)) -> dbl#(X) first#(s(X),cons(Y,Z)) -> activate#(Z) -> activate#(n__s(X)) -> s#(X) first#(s(X),cons(Y,Z)) -> activate#(Z) -> activate#(n__add(X1,X2)) -> add#(X1,X2) first#(s(X),cons(Y,Z)) -> activate#(Z) -> activate#(n__terms(X)) -> terms#(X) first#(s(X),cons(Y,Z)) -> activate#(X) -> activate#(n__first(X1,X2)) -> first#(X1,X2) first#(s(X),cons(Y,Z)) -> activate#(X) -> activate#(n__dbl(X)) -> dbl#(X) first#(s(X),cons(Y,Z)) -> activate#(X) -> activate#(n__s(X)) -> s#(X) first#(s(X),cons(Y,Z)) -> activate#(X) -> activate#(n__add(X1,X2)) -> add#(X1,X2) first#(s(X),cons(Y,Z)) -> activate#(X) -> activate#(n__terms(X)) -> terms#(X) add#(s(X),Y) -> activate#(X) -> activate#(n__first(X1,X2)) -> first#(X1,X2) add#(s(X),Y) -> activate#(X) -> activate#(n__dbl(X)) -> dbl#(X) add#(s(X),Y) -> activate#(X) -> activate#(n__s(X)) -> s#(X) add#(s(X),Y) -> activate#(X) -> activate#(n__add(X1,X2)) -> add#(X1,X2) add#(s(X),Y) -> activate#(X) -> activate#(n__terms(X)) -> terms#(X) activate#(n__first(X1,X2)) -> first#(X1,X2) -> first#(s(X),cons(Y,Z)) -> activate#(X) activate#(n__first(X1,X2)) -> first#(X1,X2) -> first#(s(X),cons(Y,Z)) -> activate#(Z) activate#(n__dbl(X)) -> dbl#(X) -> dbl#(s(X)) -> s#(n__s(n__dbl(activate(X)))) activate#(n__dbl(X)) -> dbl#(X) -> dbl#(s(X)) -> activate#(X) activate#(n__add(X1,X2)) -> add#(X1,X2) -> add#(s(X),Y) -> s#(n__add(activate(X),Y)) activate#(n__add(X1,X2)) -> add#(X1,X2) -> add#(s(X),Y) -> activate#(X) activate#(n__terms(X)) -> terms#(X) -> terms#(N) -> sqr#(N) activate#(n__terms(X)) -> terms#(X) -> terms#(N) -> s#(N) dbl#(s(X)) -> activate#(X) -> activate#(n__first(X1,X2)) -> first#(X1,X2) dbl#(s(X)) -> activate#(X) -> activate#(n__dbl(X)) -> dbl#(X) dbl#(s(X)) -> activate#(X) -> activate#(n__s(X)) -> s#(X) dbl#(s(X)) -> activate#(X) -> activate#(n__add(X1,X2)) -> add#(X1,X2) dbl#(s(X)) -> activate#(X) -> activate#(n__terms(X)) -> terms#(X) sqr#(s(X)) -> activate#(X) -> activate#(n__first(X1,X2)) -> first#(X1,X2) sqr#(s(X)) -> activate#(X) -> activate#(n__dbl(X)) -> dbl#(X) sqr#(s(X)) -> activate#(X) -> activate#(n__s(X)) -> s#(X) sqr#(s(X)) -> activate#(X) -> activate#(n__add(X1,X2)) -> add#(X1,X2) sqr#(s(X)) -> activate#(X) -> activate#(n__terms(X)) -> terms#(X) sqr#(s(X)) -> dbl#(activate(X)) -> dbl#(s(X)) -> s#(n__s(n__dbl(activate(X)))) sqr#(s(X)) -> dbl#(activate(X)) -> dbl#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) -> sqr#(s(X)) -> s#(n__add(sqr(activate(X)),dbl(activate(X)))) sqr#(s(X)) -> sqr#(activate(X)) -> sqr#(s(X)) -> sqr#(activate(X)) sqr#(s(X)) -> sqr#(activate(X)) -> sqr#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) -> sqr#(s(X)) -> dbl#(activate(X)) terms#(N) -> sqr#(N) -> sqr#(s(X)) -> s#(n__add(sqr(activate(X)),dbl(activate(X)))) terms#(N) -> sqr#(N) -> sqr#(s(X)) -> sqr#(activate(X)) terms#(N) -> sqr#(N) -> sqr#(s(X)) -> activate#(X) terms#(N) -> sqr#(N) -> sqr#(s(X)) -> dbl#(activate(X)) SCC Processor: #sccs: 1 #rules: 12 #arcs: 43/289 DPs: first#(s(X),cons(Y,Z)) -> activate#(Z) activate#(n__terms(X)) -> terms#(X) terms#(N) -> sqr#(N) sqr#(s(X)) -> dbl#(activate(X)) dbl#(s(X)) -> activate#(X) activate#(n__add(X1,X2)) -> add#(X1,X2) add#(s(X),Y) -> activate#(X) activate#(n__dbl(X)) -> dbl#(X) activate#(n__first(X1,X2)) -> first#(X1,X2) first#(s(X),cons(Y,Z)) -> activate#(X) sqr#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X Arctic Interpretation Processor: dimension: 1 usable rules: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X interpretation: [sqr#](x0) = x0 + 0, [n__terms](x0) = x0 + 0, [n__first](x0, x1) = 7x0 + x1 + 7, [dbl](x0) = x0 + 5, [sqr](x0) = x0 + 4, [s](x0) = x0 + 0, [terms#](x0) = x0 + 0, [add#](x0, x1) = x0 + x1 + 0, [dbl#](x0) = x0, [first#](x0, x1) = 7x0 + x1, [cons](x0, x1) = x1 + 0, [n__dbl](x0) = x0 + 5, [terms](x0) = x0 + 0, [activate](x0) = x0 + 0, [activate#](x0) = x0, [nil] = 0, [add](x0, x1) = x0 + x1 + 0, [n__s](x0) = x0, [n__add](x0, x1) = x0 + x1 + 0, [first](x0, x1) = 7x0 + x1 + 7, [0] = 0, [recip](x0) = x0 + 0 orientation: first#(s(X),cons(Y,Z)) = 7X + Z + 7 >= Z = activate#(Z) activate#(n__terms(X)) = X + 0 >= X + 0 = terms#(X) terms#(N) = N + 0 >= N + 0 = sqr#(N) sqr#(s(X)) = X + 0 >= X + 0 = dbl#(activate(X)) dbl#(s(X)) = X + 0 >= X = activate#(X) activate#(n__add(X1,X2)) = X1 + X2 + 0 >= X1 + X2 + 0 = add#(X1,X2) add#(s(X),Y) = X + Y + 0 >= X = activate#(X) activate#(n__dbl(X)) = X + 5 >= X = dbl#(X) activate#(n__first(X1,X2)) = 7X1 + X2 + 7 >= 7X1 + X2 = first#(X1,X2) first#(s(X),cons(Y,Z)) = 7X + Z + 7 >= X = activate#(X) sqr#(s(X)) = X + 0 >= X = activate#(X) sqr#(s(X)) = X + 0 >= X + 0 = sqr#(activate(X)) terms(N) = N + 0 >= N + 0 = cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) = 4 >= 0 = 0() sqr(s(X)) = X + 4 >= X + 5 = s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) = 5 >= 0 = 0() dbl(s(X)) = X + 5 >= X + 5 = s(n__s(n__dbl(activate(X)))) add(0(),X) = X + 0 >= X = X add(s(X),Y) = X + Y + 0 >= X + Y + 0 = s(n__add(activate(X),Y)) first(0(),X) = X + 7 >= 0 = nil() first(s(X),cons(Y,Z)) = 7X + Z + 7 >= 7X + Z + 7 = cons(Y,n__first(activate(X),activate(Z))) terms(X) = X + 0 >= X + 0 = n__terms(X) add(X1,X2) = X1 + X2 + 0 >= X1 + X2 + 0 = n__add(X1,X2) s(X) = X + 0 >= X = n__s(X) dbl(X) = X + 5 >= X + 5 = n__dbl(X) first(X1,X2) = 7X1 + X2 + 7 >= 7X1 + X2 + 7 = n__first(X1,X2) activate(n__terms(X)) = X + 0 >= X + 0 = terms(X) activate(n__add(X1,X2)) = X1 + X2 + 0 >= X1 + X2 + 0 = add(X1,X2) activate(n__s(X)) = X + 0 >= X + 0 = s(X) activate(n__dbl(X)) = X + 5 >= X + 5 = dbl(X) activate(n__first(X1,X2)) = 7X1 + X2 + 7 >= 7X1 + X2 + 7 = first(X1,X2) activate(X) = X + 0 >= X = X problem: DPs: first#(s(X),cons(Y,Z)) -> activate#(Z) activate#(n__terms(X)) -> terms#(X) terms#(N) -> sqr#(N) sqr#(s(X)) -> dbl#(activate(X)) dbl#(s(X)) -> activate#(X) activate#(n__add(X1,X2)) -> add#(X1,X2) add#(s(X),Y) -> activate#(X) activate#(n__dbl(X)) -> dbl#(X) activate#(n__first(X1,X2)) -> first#(X1,X2) sqr#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X Restore Modifier: DPs: first#(s(X),cons(Y,Z)) -> activate#(Z) activate#(n__terms(X)) -> terms#(X) terms#(N) -> sqr#(N) sqr#(s(X)) -> dbl#(activate(X)) dbl#(s(X)) -> activate#(X) activate#(n__add(X1,X2)) -> add#(X1,X2) add#(s(X),Y) -> activate#(X) activate#(n__dbl(X)) -> dbl#(X) activate#(n__first(X1,X2)) -> first#(X1,X2) sqr#(s(X)) -> activate#(X) sqr#(s(X)) -> sqr#(activate(X)) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X Matrix Interpretation Processor: dim=1 usable rules: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X interpretation: [sqr#](x0) = x0 + 2, [n__terms](x0) = 2x0 + 2, [n__first](x0, x1) = 5x0 + x1, [dbl](x0) = 2x0 + 4, [sqr](x0) = 1, [s](x0) = 2x0, [terms#](x0) = x0 + 2, [add#](x0, x1) = 2x0 + 2x1, [dbl#](x0) = x0 + 2, [first#](x0, x1) = x1, [cons](x0, x1) = x1, [n__dbl](x0) = x0 + 2, [terms](x0) = 4x0 + 2, [activate](x0) = 2x0, [activate#](x0) = x0, [nil] = 0, [add](x0, x1) = 4x0 + 4x1, [n__s](x0) = x0, [n__add](x0, x1) = 2x0 + 2x1, [first](x0, x1) = 5x0 + 2x1, [0] = 2, [recip](x0) = 2 orientation: first#(s(X),cons(Y,Z)) = Z >= Z = activate#(Z) activate#(n__terms(X)) = 2X + 2 >= X + 2 = terms#(X) terms#(N) = N + 2 >= N + 2 = sqr#(N) sqr#(s(X)) = 2X + 2 >= 2X + 2 = dbl#(activate(X)) dbl#(s(X)) = 2X + 2 >= X = activate#(X) activate#(n__add(X1,X2)) = 2X1 + 2X2 >= 2X1 + 2X2 = add#(X1,X2) add#(s(X),Y) = 4X + 2Y >= X = activate#(X) activate#(n__dbl(X)) = X + 2 >= X + 2 = dbl#(X) activate#(n__first(X1,X2)) = 5X1 + X2 >= X2 = first#(X1,X2) sqr#(s(X)) = 2X + 2 >= X = activate#(X) sqr#(s(X)) = 2X + 2 >= 2X + 2 = sqr#(activate(X)) terms(N) = 4N + 2 >= 4N + 2 = cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) = 1 >= 2 = 0() sqr(s(X)) = 1 >= 16X + 20 = s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) = 8 >= 2 = 0() dbl(s(X)) = 4X + 4 >= 4X + 4 = s(n__s(n__dbl(activate(X)))) add(0(),X) = 4X + 8 >= X = X add(s(X),Y) = 8X + 4Y >= 8X + 4Y = s(n__add(activate(X),Y)) first(0(),X) = 2X + 10 >= 0 = nil() first(s(X),cons(Y,Z)) = 10X + 2Z >= 10X + 2Z = cons(Y,n__first(activate(X),activate(Z))) terms(X) = 4X + 2 >= 2X + 2 = n__terms(X) add(X1,X2) = 4X1 + 4X2 >= 2X1 + 2X2 = n__add(X1,X2) s(X) = 2X >= X = n__s(X) dbl(X) = 2X + 4 >= X + 2 = n__dbl(X) first(X1,X2) = 5X1 + 2X2 >= 5X1 + X2 = n__first(X1,X2) activate(n__terms(X)) = 4X + 4 >= 4X + 2 = terms(X) activate(n__add(X1,X2)) = 4X1 + 4X2 >= 4X1 + 4X2 = add(X1,X2) activate(n__s(X)) = 2X >= 2X = s(X) activate(n__dbl(X)) = 2X + 4 >= 2X + 4 = dbl(X) activate(n__first(X1,X2)) = 10X1 + 2X2 >= 5X1 + 2X2 = first(X1,X2) activate(X) = 2X >= X = X problem: DPs: first#(s(X),cons(Y,Z)) -> activate#(Z) activate#(n__terms(X)) -> terms#(X) terms#(N) -> sqr#(N) sqr#(s(X)) -> dbl#(activate(X)) activate#(n__add(X1,X2)) -> add#(X1,X2) add#(s(X),Y) -> activate#(X) activate#(n__dbl(X)) -> dbl#(X) activate#(n__first(X1,X2)) -> first#(X1,X2) sqr#(s(X)) -> sqr#(activate(X)) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X Restore Modifier: DPs: first#(s(X),cons(Y,Z)) -> activate#(Z) activate#(n__terms(X)) -> terms#(X) terms#(N) -> sqr#(N) sqr#(s(X)) -> dbl#(activate(X)) activate#(n__add(X1,X2)) -> add#(X1,X2) add#(s(X),Y) -> activate#(X) activate#(n__dbl(X)) -> dbl#(X) activate#(n__first(X1,X2)) -> first#(X1,X2) sqr#(s(X)) -> sqr#(activate(X)) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X SCC Processor: #sccs: 2 #rules: 5 #arcs: 32/81 DPs: first#(s(X),cons(Y,Z)) -> activate#(Z) activate#(n__add(X1,X2)) -> add#(X1,X2) add#(s(X),Y) -> activate#(X) activate#(n__first(X1,X2)) -> first#(X1,X2) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X Subterm Criterion Processor: simple projection: pi(activate#) = 0 pi(add#) = 0 pi(first#) = 1 problem: DPs: TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X Qed DPs: sqr#(s(X)) -> sqr#(activate(X)) TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X Matrix Interpretation Processor: dim=1 usable rules: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X interpretation: [sqr#](x0) = 2x0 + 1, [n__terms](x0) = 0, [n__first](x0, x1) = x0 + 4x1, [dbl](x0) = 4x0 + 6, [sqr](x0) = 2x0 + 2, [s](x0) = 2x0 + 2, [cons](x0, x1) = 2x0, [n__dbl](x0) = 2x0 + 5, [terms](x0) = 0, [activate](x0) = 2x0, [nil] = 0, [add](x0, x1) = 2x0 + 2x1, [n__s](x0) = x0 + 1, [n__add](x0, x1) = x0 + x1, [first](x0, x1) = x0 + 7x1, [0] = 6, [recip](x0) = 0 orientation: sqr#(s(X)) = 4X + 5 >= 4X + 1 = sqr#(activate(X)) terms(N) = 0 >= 0 = cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) = 14 >= 6 = 0() sqr(s(X)) = 4X + 6 >= 24X + 18 = s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) = 30 >= 6 = 0() dbl(s(X)) = 8X + 14 >= 8X + 14 = s(n__s(n__dbl(activate(X)))) add(0(),X) = 2X + 12 >= X = X add(s(X),Y) = 4X + 2Y + 4 >= 4X + 2Y + 2 = s(n__add(activate(X),Y)) first(0(),X) = 7X + 6 >= 0 = nil() first(s(X),cons(Y,Z)) = 2X + 14Y + 2 >= 2Y = cons(Y,n__first(activate(X),activate(Z))) terms(X) = 0 >= 0 = n__terms(X) add(X1,X2) = 2X1 + 2X2 >= X1 + X2 = n__add(X1,X2) s(X) = 2X + 2 >= X + 1 = n__s(X) dbl(X) = 4X + 6 >= 2X + 5 = n__dbl(X) first(X1,X2) = X1 + 7X2 >= X1 + 4X2 = n__first(X1,X2) activate(n__terms(X)) = 0 >= 0 = terms(X) activate(n__add(X1,X2)) = 2X1 + 2X2 >= 2X1 + 2X2 = add(X1,X2) activate(n__s(X)) = 2X + 2 >= 2X + 2 = s(X) activate(n__dbl(X)) = 4X + 10 >= 4X + 6 = dbl(X) activate(n__first(X1,X2)) = 2X1 + 8X2 >= X1 + 7X2 = first(X1,X2) activate(X) = 2X >= X = X problem: DPs: TRS: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(0()) -> 0() sqr(s(X)) -> s(n__add(sqr(activate(X)),dbl(activate(X)))) dbl(0()) -> 0() dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(activate(X),activate(Z))) terms(X) -> n__terms(X) add(X1,X2) -> n__add(X1,X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X Qed